An asymmetric organocatalytic direct C-H/C-H oxidative coupling reaction of N(1),N(3)-diphenylmalonamides has been well established by using chiral organoiodine compounds as catalysts, wherein four C-H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity. More importantly, the findings indicated that chiral hypervalent organoiodine reagents can serve as alternative catalysts for the creation of enantioselective functionalization of inactive C-H bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201309967 | DOI Listing |
Tetrahedron Lett
October 2024
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India.
Herein, an organocatalytic asymmetric desymmetrizing [4+2] cycloaddition/base-mediated oxidative aromatization reaction sequence has been developed between spirophthalide 2,5-cyclohexadienones and β-methyl cinnamaldehydes. The reaction proceeds through chiral dienamine intermediate formation, and the densely functionalized spirocyclic isobenzofuranone-embedded chiral arenes were formed in high yields with excellent enantioselectivities. A 2-fold desymmetrization reaction was also performed, and the products were obtained in high enantioselectivities.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu 181221, J&K, India.
A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
The chiral amine catalyzed diastereo- and enantioselective [3 + 2] cycloaddition between isatin-derived azomethine ylides and α,β-unsaturated aldehydes was successfully carried out to afford spiro[oxindole-3,2'-pyrrolidine]s. It was anticipated that the formation of azomethine ylides occurred the cycloreversion of dispirooxindole-imidazolidines, which are precursor imine homodimers, in aqueous solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!