Development of neural correlates of linear motion in the rat vestibular nucleus.

Sheng Li Xue Bao

Departments of Physiology and Biochemistry, and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Published: February 2014

The capability of the central vestibular system in utilizing cues arising from the inner ear determines the ability of animals to acquire the sense of head orientations in the three-dimensional space and to shape postural movements. During development, neurons in the vestibular nucleus (VN) show significant changes in their electrophysiological properties. An age-dependent enhancement of membrane excitability is accompanied by a progressive increase in firing rate and discharge regularity. The coding of horizontal and vertical linear motions also exhibits developmental refinement in VN neurons. Further, modification of cell surface receptors, such as glutamate receptors, of developing VN neurons are well-orchestrated in the course of maturation, thereby regulating synaptic efficacy and spatial coding capacity of these neurons in local circuits. Taken together, these characteristic features of VN neurons contribute to developmental establishment of space-centered coordinates within the brain.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vestibular nucleus
8
neurons
5
development neural
4
neural correlates
4
correlates linear
4
linear motion
4
motion rat
4
rat vestibular
4
nucleus capability
4
capability central
4

Similar Publications

Background And Purpose: The dorsolateral portion of the caudal pons contains the vestibular nucleus (VN) and inferior cerebellar peduncle (ICP) that play important roles in conveying and processing vestibular and ocular motor signals. This study aimed to characterize ocular motor abnormalities along with their anatomical correlations in dorsolateral pons (DLP) lesions.

Methods: We analyzed clinical features, and results of neuro-otological evaluations and neuroimaging of 18 patients with unilateral DLP lesions (17 with DLP infarction and 1 with cavernous malformation) from among 506 patients with pontine infarction in a stroke registry.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

The relationship between the vestibular system and the circadian timing system: A review.

Sleep Med

December 2024

Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.

This review attempts to analyze the relationship between the vestibular system and the circadian timing system. The activity of the biological clock allows an organism to optimally perform its tasks throughout the nychtemeron. To achieve this, the biological clock is subjected to exogenous factors that entrain it to a 24h period.

View Article and Find Full Text PDF

Introduction: The Efferent Vestibular System (EVS) originates in brainstem Efferent Vestibular Nuclei (EVN) and modifies afferent vestibular signals at their source, in peripheral vestibular organs. Recent evidence suggests that EVS is also involved in the development of motion sickness symptoms, including vertigo and nausea, but the underlying mechanism is unknown. One possible link between EVN and motion sickness symptoms is through the neuropeptide calcitonin gene-related peptide (CGRP).

View Article and Find Full Text PDF

A gene cadre orchestrates the normal development of sensory and non-sensory cells in the inner ear, segregating the cochlea with a distinct tonotopic sound frequency map, similar brain projection, and five vestibular end-organs. However, the role of genes driving the ear development is largely unknown. Here, we show double deletion of the Iroquois homeobox 3 and 5 transcription factors (Irx3/5 DKO) leads to the fusion of the saccule and the cochlear base.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!