Aims: There is a need for animal models of plaque rupture. We previously reported that elastin fragmentation, due to a mutation (C1039G(+/-)) in the fibrillin-1 (Fbn1) gene, promotes atherogenesis and a highly unstable plaque phenotype in apolipoprotein E deficient (ApoE(-/-)) mice on a Western-type diet (WD). Here, we investigated whether plaque rupture occurred in ApoE(-/-)Fbn1(C1039G+/-) mice and was associated with myocardial infarction, stroke, and sudden death.
Methods And Results: Female ApoE(-/-)Fbn1(C1039G+/-) and ApoE(-/-) mice were fed a WD for up to 35 weeks. Compared to ApoE(-/-) mice, plaques of ApoE(-/-)Fbn1(C1039G+/-) mice showed a threefold increase in necrotic core size, augmented T-cell infiltration, a decreased collagen I content (70 ± 10%), extensive neovascularization, intraplaque haemorrhage, and a significant increase in matrix metalloproteinase-2, -9, -12, and -13 expression or activity. Plaque rupture was observed in 70% of ascending aortas and in 50% of brachiocephalic arteries of ApoE(-/-)Fbn1(C1039G+/-) mice. In ApoE(-/-) mice, plaque rupture was not seen in ascending aortas and only in 10% of brachiocephalic arteries. Seventy percent of ApoE(-/-)Fbn1(C1039G+/-) mice died suddenly, whereas all ApoE(-/-) mice survived. ApoE(-/-)Fbn1(C1039G+/-) mice showed coronary plaques and myocardial infarction (75% of mice). Furthermore, they displayed head tilt, disorientation, and motor disturbances (66% of cases), disturbed cerebral blood flow (73% of cases; MR angiograms) and brain hypoxia (64% of cases), indicative of stroke.
Conclusions: Elastin fragmentation plays a key role in plaque destabilization and rupture. ApoE(-/-)Fbn1(C1039G+/-) mice represent a unique model of acute plaque rupture with human-like complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416138 | PMC |
http://dx.doi.org/10.1093/eurheartj/ehu041 | DOI Listing |
JACC Cardiovasc Imaging
January 2025
University of Texas Health Sciences Center, Houston, Texas, USA. Electronic address:
Curr Vasc Pharmacol
January 2025
Cardiology Department, Athens Naval Hospital, Athens, Greece.
Background: Gut microbiota-derived metabolite Trimethylamine-N-oxide (TMAO) is increasingly recognized as a potential novel prognostic biomarker for cardiovascular disease. Our research work aimed to investigate the potential utility of TMAO measurement in patients with STelevation Myocardial Infarction (STEMI).
Methods: We performed a systematic literature search in PubMed from inception to the 1st of February 2024 to identify all studies examining the association between plasma TMAO levels and disease complexity or clinical outcomes in STEMI patients.
Atherosclerosis (AS) is a major cause of cardiovascular disease. In particular, the unpredictable rupture of vulnerable atherosclerotic plaques (VASPs) can cause serious cardiovascular events such as myocardial infarction, stroke, and even sudden death. Therefore, early evaluation of the vulnerability of atherosclerotic plaques is of great importance.
View Article and Find Full Text PDFKardiol Pol
January 2025
Core Facilities, Medical University of Vienna, Vienna, Austria.
Micro-ribonucleic acids (miRs) are small, non-coding RNAs, which play an important role in atherosclerotic plaque formation, development, and stability. Plaque destabilization and rupture lead to acute coronary syndromes (ACS). Previous studies have implicated several different miRs in the pathogenesis of atherosclerosis.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), Madison, USA.
Carotid plaques-the buildup of cholesterol, calcium, cellular debris, and fibrous tissues in carotid arteries-can rupture, release microemboli into the cerebral vasculature and cause strokes. The likelihood of a plaque rupturing is thought to be associated with its composition (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!