Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to compare the maximum potential for heat loss of football linemen (L) and non-linemen (NL) during a National Collegiate Athletic Association (NCAA) summer training camp. It was hypothesized that heat loss potential in L would be lower than NL because of differences in self-generated air flow during position-specific activities. Fourteen NCAA division 1 football players {7 L (mass: 126 ± 6 kg; body surface area [BSA]: 2.51 ± 0.19 m(2)) and 7 NL (mass: 88 ± 13 kg; BSA: 2.09 ± 0.18 m(2))} participated over 6 days in southern Florida (Tdb: 31.2 ± 1.6 °C, T(wb): 27.0 ± 0.7 °C, Tr: 38.4 ± 2.8° C). Simultaneous on-field measurements of self-generated air velocities (v(self)) and mean skin temperatures (Tsk) were performed throughout practice, which included 4 drill categories (special teams, wind sprints, individual drills, and team drills). The resultant net potential for heat loss through convection, radiation, and evaporation (H(total)) was calculated. Values for Tsk were similar between L and NL for all drills (L: 35.4 ± 0.8 °C; NL: 35.4 ± 0.4 °C; p = 0.92). However, v(self) was greater in NL during wind sprints, individual drills, and team drills (p ≤ 0.05). Consequently H(total) was significantly greater in NL for all drills except special teams (p ≤ 0.05). The mean estimated rate of oxygen consumption needed to exceed H(total) was 8.6 ± 1.3 ml · kg(-1) · min(-1) (2.5 ± 0.4 METs) for NL but only 5.6 ± 1.4 ml · kg(-1) · min(-1) (1.6 ± 0.4 METs) for L. A lower heat loss potential occurs in L because of the more static nature of their position-related activities and not because of differences in Tsk. The practical relevance of these findings is that potential interventions that increase convective and evaporative heat loss (i.e., mechanical fans) should specifically target L, particularly while they are participating in static on-field drills and during rest intervals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000000427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!