A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. | LitMetric

Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells.

Biochem Pharmacol

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:

Published: April 2014

Inflammation and vascular perturbations are increasingly implicated in the pathogenesis of neurodegenerative diseases. Prevailing evidence suggests that valproic acid (VPA), an antiepileptic and mood stabilizer, exhibits not only neuro-protective effects, but also anti-inflammatory effects in neurodegenerative diseases. However, the underlying mechanism contributing to VPA's suppression of inflammatory responses remains unclear. In this study, we explored the inhibitory action of VPA on cyclooxygenase (COX)-2 expression in bEnd.3 mouse brain microvascular endothelial cells exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus. The LPS-induced increases in COX-2 protein level and COX-2 promoter-luciferase activity were significantly suppressed by VPA. VPA inhibited p38MAPK and JNK phosphorylation in LPS-stimulated bEnd.3 cells. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) or a JNK signaling inhibitor (JNK inhibitor II) significantly inhibited LPS-induced COX-2 expression. VPA inhibited LPS-induced NF-κB subunit p65 phosphorylation and κB-luciferase activity. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was attenuated in the presence of VPA. In addition, VPA suppression of p38MAPK, JNK and p65 phosphorylation, and subsequent COX-2 expression was restored in cells transfected with mitogen-activated protein kinase phosphatase-1 (MKP-1) dominant negative (DN) mutant. VPA also caused increases in MKP-1 acetylation and MKP-1 phosphatase activity in bEnd.3 cells. In conclusion, VPA may cause MKP-1 activation to dephosphorylate p38MAPK and JNK, leading to decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated bEnd.3 cells. The present study therefore supports the therapeutic value of VPA in alleviating brain inflammatory processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.02.004DOI Listing

Publication Analysis

Top Keywords

cox-2 expression
12
p38mapk jnk
12
bend3 cells
12
vpa
10
valproic acid
8
brain microvascular
8
microvascular endothelial
8
endothelial cells
8
neurodegenerative diseases
8
cox-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!