Background: Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied.
Results: Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL.
Conclusions: The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between different models and marker densities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936936 | PMC |
http://dx.doi.org/10.1186/1297-9686-46-14 | DOI Listing |
Plants (Basel)
December 2024
Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safetyof Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
Waterlogging is becoming a global issue, affecting crop growth and yield in low-lying rainfed areas. A DH line, TamF169, showing superior waterlogging tolerance, and its waterlogging-sensitive parent, Franklin, were used to conduct transcriptome analyses. The results showed that 2209 and 2578 differentially expressed genes (DEGs) in Franklin and 1997 and 1709 DEGs in TamF169 were detected by comparing gene expression levels under control and waterlogging after 4 and 8 days, respectively, with 392 and 257 DEGs being specific to TamF169 after 4 and 8 days under waterlogging, respectively.
View Article and Find Full Text PDFPLoS Genet
January 2025
Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
Background: Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.
Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA.
Two dwarf bunt resistance QTLs were mapped to chromosome 6D, and KASP markers associated with the loci were developed and validated in a panel of regionally adapted winter wheats. UI Silver is an invaluable adapted resistant cultivar possessing the two identified QTL potentially associated with genes Bt9 and Bt10 and will be useful in future cultivar development to improve dwarf bunt resistance. Dwarf bunt, caused by Tilletia controversa, is a fungal disease of wheat that can cause complete loss of grain yield and quality during epidemics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!