Objective: Physiological hypertrophy is featured by the hypertrophy of pre-existing cardiomyocytes and the formation of new cardiomyocytes. C-kit positive cardiac progenitor cells increased their numbers in exercise-induced physiological hypertrophy. However, the participation of Sca-1 positive cells in the physiological adaptation of the heart to exercise training is unclear.

Methods: Physiological hypertrophy was induced by swimming and the mRNA levels of GATA binding protein 4 (GATA4), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), endogenous hepatocyte growth factor (HGF), and insulin like growth factor-1 (IGF-1) from the whole heart were determined by real-time polymerase chain reactions (RT-PCRs) analysis. Immunofluorescent staining was used to compare the number of C-kit and Sca-1 positive cardiac progenitor cells. In addition, mRNA levels of C-kit and Sca-1 in left ventricle (LV), right ventricle (RV), and outflow tract (OFT) were determined in mice swimming for 7, 14, and 21 days by RT-PCRs.

Results: The ratio of heart weight (HW) to body weight and HW to tibia length and the mRNA level of GATA4 were increased while mRNA levels of ANP and BNP remained unchanged. C-kit and Sca-1 positive cardiac progenitor cells were activated by swimming training. An increased endogenous production of HGF and IGF was observed at least at the mRNA level. Swimming induced a significant up-regulation of C-kit in LV of mice swimming for 1, 2 and 3 weeks and in RV of mice swimming for 3 weeks. Sca-1 positive cardiac progenitor cells were increased in LV and OFT in mice swimming for 3 weeks.

Conclusion: This study presents that swimming-induced physiological hypertrophy initiates activation of cardiac progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925911PMC

Publication Analysis

Top Keywords

cardiac progenitor
24
progenitor cells
24
physiological hypertrophy
20
positive cardiac
16
sca-1 positive
16
mice swimming
16
mrna levels
12
c-kit sca-1
12
exercise-induced physiological
8
hypertrophy initiates
8

Similar Publications

Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

Role of Trained Immunity in Heath and Disease.

Curr Cardiol Rep

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.

Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.

Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.

View Article and Find Full Text PDF

Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain.

Cell Rep

January 2025

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:

The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!