Biophysical features of MagA expression in mammalian cells: implications for MRI contrast.

Front Microbiol

Imaging Program, Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada ; Collaborative Graduate Program in Molecular Imaging, Western University London, ON, Canada.

Published: February 2014

AI Article Synopsis

  • The study compared a magnetotactic bacterial gene (MagA) to modified mammalian ferritin genes (HF + LF) to assess their effectiveness as non-invasive magnetic resonance (MR) reporter genes.
  • Measurements of MR relaxation rates (R2*, R2, R2', and R1) in tumor cells indicated that MagA and HF + LF overexpression, especially with iron supplementation, resulted in significantly improved transverse relaxation rates compared to non-supplemented controls.
  • The findings suggest that R2' could be a more reliable indicator of iron-based contrast, with iron supplementation increasing the iron/zinc ratio and decreasing transferrin receptor expression, pointing to the potential of magnetotactic bacterial gene expression

Article Abstract

We compared overexpression of the magnetotactic bacterial gene MagA with the modified mammalian ferritin genes HF + LF, in which both heavy and light subunits lack iron response elements. Whereas both expression systems have been proposed for use in non-invasive, magnetic resonance (MR) reporter gene expression, limited information is available regarding their relative potential for providing gene-based contrast. Measurements of MR relaxation rates in these expression systems are important for optimizing cell detection and specificity, for developing quantification methods, and for refinement of gene-based iron contrast using magnetosome associated genes. We measured the total transverse relaxation rate (R2*), its irreversible and reversible components (R2 and R2', respectively) and the longitudinal relaxation rate (R1) in MDA-MB-435 tumor cells. Clonal lines overexpressing MagA and HF + LF were cultured in the presence and absence of iron supplementation, and mounted in a spherical phantom for relaxation mapping at 3 Tesla. In addition to MR measures, cellular changes in iron and zinc were evaluated by inductively coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-supplemented, MagA- and HF + LF-expressing cells compared to non-supplemented cells and the parental control. R2* provided the greatest absolute difference and R2' showed the greatest relative difference, consistent with the notion that R2' may be a more specific indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation of MagA- and HF + LF-expressing cells increased the iron/zinc ratio approximately 20-fold, while transferrin receptor expression decreased approximately 10-fold. Level of ATP was similar across all cell types and culture conditions. These results highlight the potential of magnetotactic bacterial gene expression for improving MR contrast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913841PMC
http://dx.doi.org/10.3389/fmicb.2014.00029DOI Listing

Publication Analysis

Top Keywords

magnetotactic bacterial
8
bacterial gene
8
expression systems
8
gene expression
8
relaxation rates
8
transverse relaxation
8
relaxation rate
8
iron supplementation
8
transferrin receptor
8
maga- lf-expressing
8

Similar Publications

Magnetochrome-catalyzed oxidation of ferrous iron by MamP enables magnetite crystal growth in the magnetotactic bacterium AMB-1.

Proc Natl Acad Sci U S A

December 2024

Commissariat à l'Energie Atomique (CEA), CNRS, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, Saint-Paul-lez-Durance 13115, France.

Magnetotactic bacteria have evolved the remarkable capacity to biomineralize chains of magnetite [Fe(II)Fe(III)O] nanoparticles that align along the geomagnetic field and optimize their navigation in the environment. Mechanisms enabling magnetite formation require the complex action of numerous proteins for iron acquisition, sequestration in dedicated magnetosome organelles, and precipitation into magnetite. The MamP protein contains c-type cytochromes called magnetochrome domains that are found exclusively in magnetotactic bacteria.

View Article and Find Full Text PDF

Biomineralization in magnetotactic bacteria: From diversity to molecular discovery-based applications.

Cell Rep

December 2024

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • The text discusses the unique process of magnetosome formation in magnetotactic bacteria (MTB), showcasing it as a significant microbial-controlled biomineralization example.
  • It emphasizes the importance of studying MTB to comprehend magnetoreception, bacterial organelles, and to explore potential applications in biotechnology and medicine.
  • The review highlights recent discoveries about MTB diversity and provides insights into magnetosome biosynthesis, along with the increasing biomedical and biotechnological uses of these microorganisms.
View Article and Find Full Text PDF

Heating Efficiency of Different Magnetotactic Bacterial Species: Influence of Magnetosome Morphology and Chain Arrangement.

ACS Appl Mater Interfaces

December 2024

Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain.

Magnetotactic bacteria have been proposed as ideal biological nanorobots due to the presence of an intracellular chain of magnetic nanoparticles (MNPs), which allows them to be guided and controlled by external magnetic fields and provides them with theragnostic capabilities intrinsic to magnetic nanoparticles, such as magnetic hyperthermia for cancer treatment. Here, we study three different bacterial species, (MSR-1), (AMB-1), and (MV-1), which synthesize magnetite nanoparticles with different morphologies and chain arrangements. We analyzed the impact of these parameters on the effective magnetic anisotropy, , and the heating capacity or Specific Absorption Rate, SAR, under alternating magnetic fields.

View Article and Find Full Text PDF

To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells.

View Article and Find Full Text PDF

Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!