Sex-specific embryonic gene expression in species with newly evolved sex chromosomes.

PLoS Genet

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America ; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America ; Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America.

Published: February 2014

Sex chromosome dosage differences between females and males are a significant form of natural genetic variation in many species. Like many species with chromosomal sex determination, Drosophila females have two X chromosomes, while males have one X and one Y. Fusions of sex chromosomes with autosomes have occurred along the lineage leading to D. pseudoobscura and D. miranda. The resulting neo-sex chromosomes are gradually evolving the properties of sex chromosomes, and neo-X chromosomes are becoming targets for the molecular mechanisms that compensate for differences in X chromosome dose between sexes. We have previously shown that D. melanogaster possess at least two dosage compensation mechanisms: the well- characterized MSL-mediated dosage compensation active in most somatic tissues, and another system active during early embryogenesis prior to the onset of MSL-mediated dosage compensation. To better understand the developmental constraints on sex chromosome gene expression and evolution, we sequenced mRNA from individual male and female embryos of D. pseudoobscura and D. miranda, from ∼0.5 to 8 hours of development. Autosomal expression levels are highly conserved between these species. But, unlike D. melanogaster, we observe a general lack of dosage compensation in D. pseudoobscura and D. miranda prior to the onset of MSL-mediated dosage compensation. Thus, either there has been a lineage-specific gain or loss in early dosage compensation mechanism(s) or increasing X chromosome dose may strain dosage compensation systems and make them less effective. The extent of female bias on the X chromosomes decreases through developmental time with the establishment of MSL-mediated dosage compensation, but may do so more slowly in D. miranda than D. pseudoobscura. These results also prompt a number of questions about whether species with more sex-linked genes have more sex-specific phenotypes, and how much transcript level variance is tolerable during critical stages of development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923672PMC
http://dx.doi.org/10.1371/journal.pgen.1004159DOI Listing

Publication Analysis

Top Keywords

dosage compensation
32
msl-mediated dosage
16
sex chromosomes
12
pseudoobscura miranda
12
dosage
9
gene expression
8
sex chromosome
8
chromosome dose
8
compensation
8
compensation mechanisms
8

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Women are disproportionately affected by Alzheimer's disease (AD) and exhibit greater AD neuropathology than men. Women possess two X chromosomes, with one randomly silenced across each cell for dosage compensation. X chromosome inactivation (XCI) is not complete, and XCI-escaping genes provide a promising avenue of discovery for biological pathways driving sex-specific AD risk.

View Article and Find Full Text PDF

Background: Late Onset Alzheimer's Disease (LOAD) is the most common neurodegenerative disorder. Carriers of an ɛ4 allele of the apolipoprotein E gene (APOE) have significantly increased risk of developing LOAD. LOAD is also strongly sex biased.

View Article and Find Full Text PDF

Background: Migraine is a disabling disorder that impacts 40 million people in the US. Zavegepant is the first calcitonin gene-related peptide (CGRP) receptor antagonist nasal-spray approved for the acute treatment of migraine with or without aura in adults. This study aimed to evaluate the proportion of patients in various pain and functional disability states over 48-h, for patients treated with zavegepant 10 mg nasal-spray versus placebo.

View Article and Find Full Text PDF

GT103 is a first-in-class, fully human, IgG3 monoclonal antibody targeting complement factor H that kills tumor cells and promotes anti-cancer immunity in preclinical models. We conducted a first-in-human phase 1b study dose escalation trial of GT103 in refractory non-small cell lung cancer to assess the safety of GT103 (NCT04314089). Dose escalation was performed using a "3 + 3" schema with primary objectives of determining safety, tolerability, PK profile and maximum tolerated dose (MTD) of GT103.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!