In human somatic cells or yeast cells lacking telomerase, telomeres are shortened upon each cell division. This gradual shortening of telomeres eventually leads to senescence. However, a small population of telomerase-deficient cells can survive by bypassing senescence through the activation of alternative recombination pathways to maintain their telomeres. Although genes involved in telomere recombination have been identified, mechanisms that trigger telomere recombination are less known. The THO (suppressor of the transcriptional defects of Hpr1 mutants by overexpression) complex is involved in transcription elongation and mRNA export. Here we demonstrate that mutations in THO complex components can stimulate early senescence and type II telomere recombination in cells lacking telomerase. The accumulation of telomere-associated noncoding telomere repeat-containing RNA (TERRA) is required for the observed telomere effects in THO complex mutants; reduced transcriptional efficiency, or overexpression of RNase H or C(1-3)A RNA can severely impair the type II telomere recombination. The results highlight a unique function for telomere-associated TERRA, in the formation of type II survivors. Moreover, because TERRA is a long noncoding RNA, these results reveal a function for long noncoding RNA in regulating recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948247 | PMC |
http://dx.doi.org/10.1073/pnas.1307415111 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
December 2024
Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, relies on retrotransposable elements-specifically , , and (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
The extracellular parasite Trypanosoma brucei evades the immune system of the mammalian host by periodically exchanging its variant surface glycoprotein (VSG) coat. Hereby, only one VSG gene is transcribed from one of 15 subtelomeric so-called bloodstream form expression sites (BES) at any given timepoint, while all other BESs are silenced. VSG gene expression is altered by homologous recombination using a large VSG gene repertoire or by a so-called in situ switch, which activates a previously silent BES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!