Hepatitis B virus (HBV) infection is a major world-wide health problem. The major obstacles for current anti-HBV therapy are the low efficacy and the occurrence of drug resistant HBV mutations. Recent studies have demonstrated that combination therapy can enhance antiviral efficacy and overcome shortcomings of established drugs. In this study, the inhibitory effect mediated by combination of siRNAs targeting different sites of HBV in transgenic mice was analyzed. HBsAg and HBeAg in the sera of the mice were analyzed by enzyme-linked immunoadsorbent assay, HBV DNA by real-time PCR and HBV mRNA by RT-PCR. Our data demonstrated that all the three siRNAs employed showed marked anti-HBV effects. The expression of HBsAg and the replication of HBV DNA could be specifically inhibited in a dose-dependent manner by siRNAs. Furthermore, combination of siRNAs compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication, even though the final concentration of siRNA used for therapy was the same. Secreted HBsAg and HBeAg in the serum of mice treated with siRNA combination were reduced by 96.7 and 96.6 %, respectively. Immunohistochemical detection of liver tissue revealed 91 % reduction of HBsAg-positive cells in the combination therapy group. The combination of siRNAs caused a greater inhibition in the levels of viral mRNA and DNA (90 and 87.7 %) relative to the control group. It was noted that the siRNA3 showed stronger inhibition of cccDNA (78.6 %). Our results revealed that combination of siRNAs mediated a stronger inhibition of viral replication and antigen expression in transgenic mice than single siRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-014-9846-2 | DOI Listing |
Adv Sci (Weinh)
January 2025
Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.
View Article and Find Full Text PDFFront Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Mol Ther Nucleic Acids
March 2025
AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
Viruses
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.
: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!