A growing range of studies have begun to document the health and well-being benefits associated with contact with nature. Most studies rely on generalized self-reports following engagement in the natural environment. The actual in-situ experience during contact with nature, and the environmental features and factors that evoke health benefits have remained relatively unexplored. Smartphones offer a new opportunity to monitor and interact with human subjects during everyday life using techniques such as Experience Sampling Methods (ESM) that involve repeated self-reports of experiences as they occur in-situ. Additionally, embedded sensors in smartphones such as Global Positioning Systems (GPS) and accelerometers can accurately trace human activities. This paper explores how these techniques can be combined to comprehensively explore the perceived health and well-being impacts of contact with nature. Custom software was developed to passively track GPS and accelerometer data, and actively prompt subjects to complete an ESM survey at regular intervals throughout their visit to a provincial park in Ontario, Canada. The ESM survey includes nine scale questions concerning moods and emotions, followed by a series of open-ended experiential questions that subjects provide recorded audio responses to. Pilot test results are used to illustrate the nature, quantity and quality of data obtained. Participant activities were clearly evident from GPS maps, including especially walking, cycling and sedate activities. From the ESM surveys, participants reported an average of 25 words per question, taking an average of 15 s to record them. Further qualitative analysis revealed that participants were willing to provide considerable insights into their experiences and perceived health impacts. The combination of passive and interactive techniques is sure to make larger studies of this type more affordable and less burdensome in the future, further enhancing the ability to understand how contact with nature enhances health and well-being.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.socscimed.2014.01.048 | DOI Listing |
Sci Rep
December 2024
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.
The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.
View Article and Find Full Text PDFThe proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical Engineering, Tsinghua University, Beijing, China.
Structural superlubricity (SSL), a state of ultralow friction and no wear between two solid surfaces in contact, offers a fundamental solution for reducing friction and wear. Recent studies find that the edge pinning of SSL contact dominates the friction. However, its nature remains mysterious due to the lack of direct characterizations on atomic scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!