A history of stress produces increases in rodent relapse-like alcohol self-administration behavior and regional brain gene expression of phosphodiesterase 10A (PDE10A), a dual-specificity cyclic adenosine monophosphate/cyclic guanosine monophosphate-inhibiting enzyme. Here, we tested the hypothesis that administration of TP-10, a specific PDE10A inhibitor, would reduce alcohol self-administration in conditions predisposing to elevated self-administration. TP-10 administration dose-dependently (0.562, 1.0 mg/kg; subcutaneously) reduced relapse-like alcohol self-administration regardless of stress history enhancement of relapse-like behavior. TP-10 also reduced alcohol self-administration in genetically alcohol-preferring rats, as well as in alcohol-non-dependent and -dependent rats. Effective systemic TP-10 doses did not alter alcohol pharmacokinetics, significantly reduce motor activity or intrabout operant response speed, or promote a conditioned place aversion. TP-10 also reduced saccharin self-administration, suggesting a general role for PDE10A in the self-administration of reinforcing substances. PDE10A inhibition in the dorsolateral striatum, but not the nucleus accumbens, reduced alcohol self-administration. Taken together, the results implicate dorsolateral striatum PDE10A in facilitating alcohol intake and support further investigation of PDE10A systems in the pathophysiology and potential treatment of substance use disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023146 | PMC |
http://dx.doi.org/10.1038/npp.2014.20 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!