A new ultrasonic high-throughput instrument for rapid DNA release from microorganisms.

J Microbiol Methods

Merck Millipore, Lab Solutions Business Unit, Biomonitoring R&D, 39 Route Industrielle de la Hardt, F-67120 Molsheim, France.

Published: April 2014

Rapid detection methods for microbiological contamination are requested by many industries that respond to public health concerns. The control laboratories are replacing traditional culturing methods with faster assays based on nucleic acid amplification technologies, such as real-time PCR. However, an optimal nucleic acid sample preparation method is critical for the sensitivity and specificity of such tools. A high-throughput automated external ultrasonic device was developed for rapid lysing of microorganisms. Based on Ct values obtained from real-time PCR, there was efficient DNA release from the 16 microorganisms tested, including Gram positive and negative bacteria, bacterial spores, yeasts and spores of molds. Linearity of the lysis method was also demonstrated for Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica, Candida albicans and the spores of Aspergillus brasiliensis, with correlation coefficients (r(2)) between 0.90 and 0.98. After sonication, PCR analysis of the lysates revealed earlier Ct values (0.83 to 7.49) for S. aureus, P. aeruginosa and S. enterica compared to the bead-beating method of lysis. These results demonstrated more efficient DNA release from bacteria with the ultrasonication system. Nevertheless, for fungi, the Ct values were 0.94 to 1.61 later for sonication than for bead beating. This study demonstrates that 4min of sonication with this new automated high-throughput instrument allows for the efficient lysis of a large range of microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2014.02.004DOI Listing

Publication Analysis

Top Keywords

dna release
12
high-throughput instrument
8
release microorganisms
8
nucleic acid
8
real-time pcr
8
efficient dna
8
ultrasonic high-throughput
4
instrument rapid
4
rapid dna
4
microorganisms
4

Similar Publications

While key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.

View Article and Find Full Text PDF

DNA Nanostructures-Based In Situ Cancer Vaccines: Mechanisms and Applications.

Small Methods

January 2025

Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China.

Current tumor vaccines suffer from inadequate immune responsive due to the insufficient release of tumor antigens, low tumor infiltration, and immunosuppressive microenvironment. DNA nanostructures with their ability to precisely engineer, controlled release, biocompatibility, and the capability to augment the immunogenicity of tumor microenvironment, have gained significant attention for their potential to revolutionize vaccine designing. This review summarizes various applications of DNA nanostructures in the construction of in situ cancer vaccines, which can generate tumor-associated antigens directly from damaged tumors for cancer immune-stimulation.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a severe condition characterized by inflammation, tissue damage, and persistent activation of the cyclic GMP-AMP (cGAS)-stimulator of interferon genes (STING) pathway, which exacerbates the production of pro-inflammatory mediators and promotes the progression of ALI. Specific inhibition of this pathway has been shown to alleviate ALI symptoms. Kaempferol-3---L-(4″--p-coumaroyl)-rhamnoside (KAE), an active compound found in the flowers of Kitagawa, exhibits anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Background: Resistin may connect obesity and intervertebral disc (IVD) degeneration (IDD) and is linked with chronic inflammation. Furthermore, human IDD is characterized by high expression of interleukin-20 (IL-20). The response of human nucleus pulposus (NP) cells to tensile forces depends on both the duration and magnitude of the force applied.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!