The use of versatile plant antimicrobial peptides in agribusiness and human health.

Peptides

Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil. Electronic address:

Published: May 2014

Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2014.02.003DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
human health
8
versatile plant
4
plant antimicrobial
4
peptides agribusiness
4
agribusiness human
4
health plant
4
plant immune
4
immune responses
4
responses involve
4

Similar Publications

Background: The aim of this study was to explore the value of heparin-binding protein (HBP) in the early recognition of sepsis coagulopathy (SIC) and the prognosis of sepsis patients.

Methods: A retrospective analysis was performed for 139 patients with sepsis admitted to the Intensive Care Unit (ICU) of Hefei Third People's Hospital from April 2022 through April 2024. The clinical baseline data, disease scores [sequential organ failure (SOFA) score, acute physiology and chronic health status (APACHE II) score, and SIC score], inflammatory markers [HBP, procalcitonin (PCT), and interleukin 6 (IL-6)], coagulation-related indexes [platelet count (PLT), prothrombin time (PT), prothrombin time international normalized ratio (PT-INR), activated partial thromboplastin time (APTT), fibrinogen (Fib), and D dimer (D-D)], and the survival time and 28-day prognosis of all patients were observed.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Characterization of antimicrobial properties of TroH2A-29 peptide from golden pompano (Trachinotus ovatus).

Dev Comp Immunol

January 2025

Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China. Electronic address:

Antimicrobial peptides (AMPs) are small, potent molecules that serve as a crucial first line of defense across a wide range of organisms, including fish. In this study, we investigated the antimicrobial properties of a novel peptide, spanning residues 52 to 80 of the full-length histone H2A protein, comprising a total of 29 amino acids. This peptide, designated as Histone H2A-29 (TroH2A-29), was derived from the golden pompano (Trachinotus ovatus) and evaluated for its activity against both Gram-positive bacteria, Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative bacteria, Vibrio alginolyticus and Vibrio harveyi.

View Article and Find Full Text PDF

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!