Considering specific clinical features as evidence of pathogenic copy number variants.

J Appl Genet

Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariškių st. 2, 08661, Vilnius, Lithuania,

Published: May 2014

Since the introduction of high-resolution microarray technologies, it has become apparent that structural chromosomal rearrangements can lead to a wide variety of clinical manifestations, including developmental delay/intellectual disability (DD/ID). It has been shown previously that the diagnostic yield of genome-wide array-based identification of submicroscopic alterations in patients with ID varies widely and depends on the patient selection criteria. More attempts have recently been made to define the phenotypic clues of pathogenic copy number variants (CNVs). The aim of this study was to investigate a well-phenotyped cohort of patients with DD/ID and determine whether certain clinical features may serve as indicators for pathogenic CNVs. A retrospective analysis was conducted for patients with DD/ID (n = 211) who were tested using genome-wide chromosomal microarray technologies and a review of the clinical data was performed. Pathogenic CNVs were detected in 29 patients. In comparison with individuals who had normal molecular karyotyping results (n = 182), malformations of the musculoskeletal system; congenital malformations of the CNS (particularly hydrocephalus and congenital malformations of the corpus callosum); minor anomalies of the eye, face, and neck subgroup (particularly downward-slanting palpebral fissures, minor anomalies of the ear, and micrognathia); brachydactyly; and umbilical hernia were more common in patients with chromosomal alterations. A multivariate logistic regression analysis allowed the identification of three independent pathogenic CNV predictors: congenital malformations of the corpus callosum, minor anomalies of the ear, and brachydactyly. Insights into the chromosomal phenotype may help to increase the diagnostic yield of microarray technologies and sharpen the distinction between chromosomal alterations and other conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-014-0197-xDOI Listing

Publication Analysis

Top Keywords

microarray technologies
12
congenital malformations
12
minor anomalies
12
clinical features
8
pathogenic copy
8
copy number
8
number variants
8
diagnostic yield
8
patients dd/id
8
pathogenic cnvs
8

Similar Publications

Bacterial proteome microarray technology in biomedical research.

Trends Biotechnol

January 2025

Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations.

Metab Brain Dis

January 2025

Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.

SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC).

View Article and Find Full Text PDF

DNA methylation-based age estimation from semen: Genome-wide marker identification and model development.

Forensic Sci Int Genet

December 2024

Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China. Electronic address:

DNA methylation at age-related CpG (AR-CpG) sites holds significant promise for forensic age estimation. However, somatic models perform poorly in semen due to unique methylation dynamics during spermatogenesis, and current studies are constrained by the limited coverage of methylation microarrays. This study aimed to identify novel semen-specific AR-CpG sites using double-enzyme reduced representation bisulfite sequencing (dRRBS) and validate these markers, alongside previously reported sites and neighboring CpGs, using bisulfite amplicon sequencing (BSAS) to develop robust age estimation models.

View Article and Find Full Text PDF

Background: Scavenger receptors (SR) are a group of receptors involved in the endocytosis of various ligands, such as modified LDL and soluble β-amyloid, which connects them to Alzheimer's disease (AD). SCARF2 (SREC-II) is part of the SR family, but unlike other scavenger receptors, internalizes a low amount of modified LDL. Its main function revolves around the binding of Aβ (Vo et al.

View Article and Find Full Text PDF

Background: Genetic testing has traditionally been divided into molecular genetics and cytogenetics, originally driven by the use of different assays and their associated limitations. Cytogenetic technologies such as karyotyping, fluorescent in situ hybridization or chromosomal microarrays are used to detect large "megabase level" copy number variants and other structural variants such as inversions or translocations. In contrast, molecular methodologies are heavily biased toward subgenic "small variants" such as single nucleotide variants, insertions/deletions, and targeted detection of intragenic, exon level deletions or duplications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!