Chromobacterium violaceum, a component of tropical soil microbiota, is an opportunistic pathogenic bacterium that can infect humans and other animals. In addition to identifying a large number of genes that demonstrate the vast biotechnological potential of this bacterium, genome sequencing revealed several virulence factors, including different cytolysins, which can be related to its pathogenicity. Here we confirmed these predictions from genomic analyses by identifying, through mass spectrometry, proteins present in the culture supernatant of C. violaceum that may constitute secreted virulence factors. Among them, we identified a secreted collagenase and the product of a gene with sequence similarity to previously characterized bacterial porins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-014-3202-5DOI Listing

Publication Analysis

Top Keywords

virulence factors
12
secreted virulence
8
chromobacterium violaceum
8
identification secreted
4
factors chromobacterium
4
violaceum chromobacterium
4
violaceum component
4
component tropical
4
tropical soil
4
soil microbiota
4

Similar Publications

Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of serotypes isolated from necropsied horses in Kentucky.

Microbiol Spectr

January 2025

Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. infections in horses can be either asymptomatic or cause severe clinical illness.

View Article and Find Full Text PDF

Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of .

Med Sci (Basel)

January 2025

Medical and Pharmaceutical Sciences Group, Faculty of Health Sciences, University of Sucre, Sincelejo 700001, Sucre, Colombia.

Background/objectives: is a clinically significant opportunistic pathogen, renowned for its ability to acquire and develop diverse mechanisms of antibiotic resistance. This study examines the resistance, virulence, and regulatory mechanisms in extensively drug-resistant clinical strains of .

Methods: Antibiotic susceptibility was assessed using the Minimum Inhibitory Concentration (MIC) method, and whole-genome sequencing (WGS) was performed on the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Objective: To review current knowledge of the various processes of programmed cell death and their roles in immunoregulation in periodontitis.

Methods: Relevant literature in the PubMed, Medline, and Scopus databases was searched, and a narrative review was performed. Programmed cell death and the regulation of its various pathways implicated in periodontal infection were reviewed.

View Article and Find Full Text PDF

Structural insights into the role of the prosegment binding loop in a papain-superfamily cysteine protease from Treponema denticola.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.

Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!