The intercellular adhesion molecule-1 (ICAM1) has been reported to function in multiple malignancies, but its effect on clear cell renal cell carcinoma (ccRCC) hasn't been discussed yet. This study aimed to identify the potential role of ICAM1 in prognostic prediction and early diagnosis of ccRCC. ICAM1 expression was inspected by immunohistochemistry and correlated with clinicopathologic variables. Association between protein expression and cancer-specific survival (CSS) of ccRCC patients was evaluated and the value of area under the receiver operating characteristics (ROC) curve (AUC) was calculated to measure the protein's diagnostic accuracy. ICAM1 was positively immunostained in 83.2% of 173 ccRCC tissues, but negatively immunostained in all the para-cancerous normal epitheliums of renal tubules. High ICAM1 expression was significantly related to male sex (P = 0.00241), T3/T4 stage (P = 0.02249), non-N0M0 stage (P = 0.03797) and positive renal pelvis invasion (P = 0.04227). Kaplan-Meier survival analysis illustrated that high ICAM1 expression was significantly correlated to a decreased CSS (P = 0.00006). Multivariate Cox analysis indicated that ICAM1 was an independent predictor for CSS of patients (P = 0.00451). Furthermore, the AUC value of ICAM1 in diagnosing ccRCC was 0.916 (P < 0.00001). In conclusion, high ICAM1 expression on tumor cells indicates a poor outcome of patients and ICAM1 is likely to be an independent predictor for the prognosis of ccRCC. Moreover, ICAM1 has a high AUC value and may be a potential and useful diagnostic marker.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-014-9568-1DOI Listing

Publication Analysis

Top Keywords

icam1 expression
20
icam1
12
high icam1
12
prognostic prediction
8
intercellular adhesion
8
adhesion molecule-1
8
molecule-1 icam1
8
clear cell
8
cell renal
8
renal cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!