Although the transforming potential of Hox genes is known for a long time, it is not precisely understood to which extent splicing is important for the leukemogenicity of this gene family. To test this for Hoxa9, we compared the leukemogenic potential of the wild-type Hoxa9, which undergoes natural splicing, with a full-length Hoxa9 construct, which was engineered to prevent natural splicing (Hoxa9FLim). Inability to undergo splicing significantly reduced in vivo leukemogenicity compared to Hoxa9-wild-typed. Importantly, Hoxa9FLim could compensate for the reduced oncogenicity by collaborating with the natural splice variant Hoxa9T, as co-expression of Hoxa9T and Hoxa9FLim induced acute myeloid leukemia (AML) after a comparable latency time as wild-type Hoxa9. Hoxa9T on its own induced AML after a similar latency as Hoxa9FLim, despite its inability to bind DNA. These data assign splicing a central task in Hox gene mediated leukemogenesis and suggest an important role of homeodomain-less splice variants in hematological neoplasms.

Download full-text PDF

Source
http://dx.doi.org/10.1038/leu.2014.74DOI Listing

Publication Analysis

Top Keywords

wild-type hoxa9
8
natural splicing
8
splicing
6
leukemogenicity hoxa9
4
hoxa9 depends
4
depends alternative
4
alternative splicing
4
splicing transforming
4
transforming potential
4
potential hox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!