We describe 2 siblings who are homozygous for the G787A mutation in the γ-sarcoglycan gene (SGCG), who presented with a severe childhood onset limb-girdle muscular dystrophy, and share a similar clinical phenotype and disease course consistent with LGMD 2C. The siblings' mother is asymptomatic and is heterozygous for the same mutation. The father is estranged but presumably was also an asymptomatic heterozygous carrier as the father's sister (siblings' aunt) died of complications related to a muscular dystrophy at the age of 14. The paternal grandparents of these siblings were first cousins. All members of the family are of Puerto Rican ancestry supporting the theory that this is a founder mutation, as has been previously suggested by Duncan et al The clinical presentation, workup, and course of our patients are described in detail. These 2 cases effectively double the reported cases of this founder mutation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CND.0000000000000018DOI Listing

Publication Analysis

Top Keywords

founder mutation
12
puerto rican
8
muscular dystrophy
8
asymptomatic heterozygous
8
mutation
5
rican founder
4
mutation g787a
4
g787a sgcg
4
sgcg gene
4
gene case
4

Similar Publications

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Transport and inhibition of the sphingosine-1-phosphate exporter SPNS2.

Nat Commun

January 2025

Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Sphingosine-1-phosphate (S1P) is a signaling lysolipid critical to heart development, immunity, and hearing. Accordingly, mutations in the S1P transporter SPNS2 are associated with reduced white cell count and hearing defects. SPNS2 also exports the S1P-mimicking FTY720-P (Fingolimod) and thereby is central to the pharmacokinetics of this drug when treating multiple sclerosis.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of the myelodysplasia-related gene (MRG) as well as additional gene mutations on outcomes in intensively treated patients with -mutated ( ) AML. Targeted DNA sequencing of 263 genes was performed in 568 AML patients (median age: 59 years) entered into the prospective AMLSG 09-09 treatment trial. Most commonly co-mutated genes were (49.

View Article and Find Full Text PDF

DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!