Assessment of nitro-polycyclic aromatic hydrocarbons in PM₁ near an area of heavy-duty traffic.

Sci Total Environ

Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS, Brazil. Electronic address:

Published: May 2014

The objective of this research was to evaluate nitro-polycyclic aromatic hydrocarbons (NPAHs) associated with ultrafine airborne particles (PM1) in areas affected by vehicles in the metropolitan area of Porto Alegre (MAPA), RS, Brazil. Extraction, isolation/derivatization, and subsequently gas chromatography with electron capture detection (GC/ECD) were the techniques used to extract and determine NPAHs (1-nitronaphthalene, 2-nitrofluorene,3-nitrofluoranthene,1-nitropyrene, and 6-nitrochrysene) associated with PM1 Airborne particles (PM1) were collected using PTFE filters in a PM162M automatic sampler. The analytical method was validated by the Standard Reference Material - SRM 1649 b - from the National Institute of Standards and Technology (NIST, USA). The results were consistent with the certified values. 3-NFlt and 6-NChr reached highest concentrations of 0.047 ng·m(-3) and 0.0284 ng·m(-3), respectively, in Sapucaia do Sul and Canoas. Seasonal variation showed higher NPAH concentrations in cold days. The NPAHs associated with PM1 were correlated with the pollutants nitrogen oxides and NPAHs with meteorological variables: temperature and wind speed. The results indicated that vehicles with diesel engines were influential. This was confirmed by the study of the ratios NPAHs/PAHs, 1-NPyr/Pyr, and 6-NChr/Chr.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.01.126DOI Listing

Publication Analysis

Top Keywords

nitro-polycyclic aromatic
8
aromatic hydrocarbons
8
npahs associated
8
airborne particles
8
particles pm1
8
associated pm1
8
assessment nitro-polycyclic
4
hydrocarbons pm₁
4
pm₁ area
4
area heavy-duty
4

Similar Publications

Organic pollutants, which have become one of the most striking problems of today, raise concerns about the spread of polyaromatic hydrocarbon (PAH) compounds into ecosystems and their toxic effects on living organisms. The purpose of this study was to determine how harmful 3-nitrofluoranthene (3-NF) exposure was to Salvinia natans, a freshwater macrophyte. Furthermore, it clarifies how this aquatic plant, which is frequently used in phytoremediation of water contaminants and wastewater treatments, interacts with PAHs and contributes to the development of bioremediation methods.

View Article and Find Full Text PDF

Substituted polycyclic aromatic hydrocarbons (sub-PAHs) are receiving increased attention due to their high toxicity and ubiquitous presence. However, the accumulation behaviors of sub-PAHs in crop roots remain unclear. In this study, the accumulation mechanism of sub-PAHs in crop roots was systematically disclosed by hydroponic experiments from the perspectives of utilization, uptake, and elimination.

View Article and Find Full Text PDF

Autumn and spring observations of PM-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in China and Japan.

Environ Pollut

February 2024

Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; College of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China. Electronic address:

The transboundary transport of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) aggravated by the East Asian winter monsoon is a major atmospheric environmental issue in East Asia. To thoroughly elucidate the role of the East Asian monsoon on regional PAH and NPAH pollution in East Asia, PM-bound PAHs and NPAHs were investigated concurrently at five sites in Beijing and Shenyang in China and Tsukuba, Kanazawa, and Wajima in Japan in autumn (November 2018) and spring (March 2019). During both autumn and spring sampling periods, the concentrations of PM, PAHs, and NPAHs at sites in China were 1-2 orders of magnitude higher than those at sites in Japan, and showed an opposite temporal variation, with higher concentrations during the autumn sampling period due to intensive emissions and unfavourable weather conditions.

View Article and Find Full Text PDF

Gestational exposure to 1-NP induces ferroptosis in placental trophoblasts via CYP1B1/ERK signaling pathway leading to fetal growth restriction.

Chem Biol Interact

January 2024

School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China. Electronic address:

Fetal growth restriction (FGR) is a prevalent complication in obstetrics, yet its exact aetiology remains unknown. Numerous studies suggest that the degradation of the living environment is a significant risk factor for FGR. 1-Nitropyrene (1-NP) is a widespread environmental pollutant as a representative substance of nitro-polycyclic aromatic hydrocarbons.

View Article and Find Full Text PDF

The Role of Water in the Adsorption of Nitro-Organic Pollutants on Activated Carbon.

J Phys Chem A

October 2023

Instituto de Estructura de la Materia, CSIC, Serrano 121, Madrid 28006, Spain.

The density functional theory (DFT) is applied to theoretically study the capture and storage of three different nitro polycyclic aromatic hydrocarbons, 4-nitrophenol, 2-nitrophenol, and 9-nitroanthracene by activated carbon, with and without the presence of water. These species are pollutants derived from vehicle and industry emissions. The modeling of adsorption is carried out at the molecular level using a high-level density functional theory with the B3LYP-GD(BJ)/6-31+G(d,p) level of theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!