Epitope-specific antibody response is controlled by immunoglobulin V(H) polymorphisms.

J Exp Med

Section for Medical Inflammation Research and 2 Section for Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.

Published: March 2014

Autoantibody formation is essential for the development of certain autoimmune diseases like rheumatoid arthritis (RA). Anti-type II collagen (CII) antibodies are found in RA patients; they interact with cartilage in vivo and are often highly pathogenic in the mouse. Autoreactivity to CII is directed to multiple epitopes and conserved between mice and humans. We have previously mapped the antibody response to CII in a heterogeneous stock cohort of mice, with a strong association with the IgH locus. We positioned the genetic polymorphisms and determined the structural requirements controlling antibody recognition of one of the major CII epitopes. Polymorphisms at positions S31R and W33T of the associated variable heavy chain (VH) allele were identified and confirmed by gene sequencing. The Fab fragment binding the J1 epitope was crystallized, and site-directed mutagenesis confirmed the importance of those two variants for antigen recognition. Back mutation to germline sequence provided evidence for a preexisting recognition of the J1 epitope. These data demonstrate a genetic association of epitope-specific antibody responses with specific VH alleles, and it highlights the importance of germline-encoded antibodies in the pathogenesis of antibody-mediated autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949579PMC
http://dx.doi.org/10.1084/jem.20130968DOI Listing

Publication Analysis

Top Keywords

epitope-specific antibody
8
antibody response
8
autoimmune diseases
8
response controlled
4
controlled immunoglobulin
4
immunoglobulin polymorphisms
4
polymorphisms autoantibody
4
autoantibody formation
4
formation essential
4
essential development
4

Similar Publications

Preventing immune escape of SARS-CoV-2 variants is crucial in vaccine development to ensure broad protection against the virus. Conformational epitopes beyond the RBD region are vital components of the spike protein but have received limited attention in the development of broadly protective SARS-CoV-2 vaccines. In this study, we used a DNA prime-protein boost regimen to evaluate the broad cross-neutralization potential of immune response targeting conformational non-RBD region against SARS-CoV-2 viruses in mice.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity.

View Article and Find Full Text PDF

Deciphering the specificity of T-cell receptor (TCR) repertoires is crucial for monitoring adaptive immune responses and developing targeted immunotherapies and vaccines. To elucidate the specificity of previously unseen TCRs, many methods employ the BLOSUM62 matrix to find TCRs with similar amino acid (AA) sequences. However, while BLOSUM62 reflects the AA substitutions within conserved regions of proteins with similar functions, the remarkable diversity of TCRs means that both TCRs with similar and dissimilar sequences can bind the same epitope.

View Article and Find Full Text PDF

Unveiling the structural mechanisms behind high affinity and selectivity in phosphorylated epitope-specific rabbit antibodies.

J Biol Chem

November 2024

Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, Japan; Abwiz Bio Inc., San Diego, California, USA; Medical Proteomics Laboratory, Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan. Electronic address:

Protein phosphorylation is a crucial process in various cellular functions, and its irregularities have been implicated in several diseases, including cancer. Antibodies are commonly employed to detect protein phosphorylation in research. However, unlike the extensive studies on recognition mechanisms of the phosphate group by proteins such as kinases and phosphatases, only a few studies have explored antibody mechanisms.

View Article and Find Full Text PDF

Pathogenic epitope-specific monoclonal antibody-based immunoassay for accurate diagnosis and monitoring of tetranectin in sepsis.

Int Immunopharmacol

December 2024

Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China. Electronic address:

Sepsis is a fatal consequence of compromised host immunity due to widespread infection. Its pathogenesis has recently been found to be associated with tetranectin (TN), a monocyte-produced plasma protein with a critical disease-associated epitope, P5-5. To develop a rapid and simple method for early monitoring of the disease in clinical settings, a purified monoclonal antibody (12F1 mAb) with high affinity for the human TN pathogenic epitope P5-5 was produced in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!