Neurotransmitter release as well as the structural and functional dynamics of the presynaptic active zone is controlled by proteinaceous components. Here we describe for the first time an experimental approach for the isolation of the presynaptic active zone from individual mouse brains, a prerequisite for understanding the functional inventory of the presynaptic protein network and for the later analysis of changes occurring in mutant mice. Using a monoclonal antibody against the ubiquitous synaptic vesicle protein SV2 we immunopurified synaptic vesicles docked to the presynaptic plasma membrane. Enrichment studies by means of Western blot analysis and mass spectrometry identified 485 proteins belonging to an impressive variety of functional categories. Our data suggest that presynaptic active zones represent focal hot spots that are not only involved in the regulation of neurotransmitter release but also in multiple structural and functional alterations the adult nerve terminal undergoes during neural activity in adult CNS. They furthermore open new avenues for characterizing alterations in the active zone proteome of mutant mice and their corresponding controls, including the various mouse models of neurological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcn.2014.02.003 | DOI Listing |
Int J Mol Sci
December 2024
Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea.
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.
View Article and Find Full Text PDFPflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
Members of the piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained five piggyBac-derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties of piggyBat from Myotis lucifugus, the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!