Development- and cold-regulated accumulation of cold shock domain proteins in wheat.

Plant Physiol Biochem

Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan. Electronic address:

Published: April 2014

AI Article Synopsis

Article Abstract

Cold shock domain (CSD) proteins, or Y-box proteins, are nucleic acid-binding proteins that are widely distributed from bacteria to higher plants and animals. Bacterial CSD proteins play an essential role in cold adaptation by destabilizing RNA secondary structures. WHEAT COLD SHOCK DOMAIN PROTEIN 1 (WCSP1) shares biochemical functions with bacterial CSD proteins and is possibly involved in cold adaptation. In this study, the temporal and spatial distribution of the wheat cold shock domain protein family (WCSPs) was serologically characterized with regard to plant development and cold adaptation. Four WCSP genes were identified through database analysis and were classified into three classes based on their molecular masses and protein domain structures. Class I (20 kD) and class II (23 kD) WCSPs demonstrated a clear pattern of accumulation in root and shoot meristematic tissues during vegetative growth. In response to cold, marked increases in WCSP levels were observed but the pattern of accumulation differed by tissue. Accumulation of WCSPs in crown tissue during cold acclimation was observed in the winter cultivar 'Chihokukomugi' but not in the spring cultivar 'Haruyutaka', suggesting a possible function for WCSPs in cold acclimation. During flower and seed development, protein levels of class I and class II WCSPs remained high. The class III WCSP (27 kD) was detected only during seed development. The highest level of class III WCSP accumulation was observed at the milky seed stage. Together, the results of this study provide a view of CSD protein accumulation throughout the life cycle of wheat and suggest that WCSPs function differentially in plant development and cold adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2014.01.004DOI Listing

Publication Analysis

Top Keywords

cold shock
16
shock domain
16
cold adaptation
16
wheat cold
12
csd proteins
12
cold
11
bacterial csd
8
domain protein
8
plant development
8
development cold
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!