Organoborylazadipyrromethenes were synthesized from free base and fluoroborylazadipyrromethenes and characterized with regard to their structural and electronic properties. B-N bond lengths, along with photophysical and redox behavior, appear dependent on the effective electronegativity at the boron atom as tuned by its substituents, with stronger electronegativity correlating to a shorter B-N bond length, red-shifted absorbance, enhanced fluorescence lifetime and yield, and positively shifted redox potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic402596u | DOI Listing |
Small
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.
View Article and Find Full Text PDFSmall Methods
January 2025
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
The evolution of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts that are highly active, stable, and conductive is crucial for advancing metal-air batteries and fuel cells. We have here thoroughly explored the OER and ORR performance for a category of two-dimensional (2D) metal-organic frameworks (MOFs) called TM(HADQ), and Rh(HADQ) exhibits a promising bifunctional OER/ORR activity, with an overpotential of 0.31 V for both OER and ORR.
View Article and Find Full Text PDFChem Sci
December 2024
College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia.
The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
Copper-based catalysts are the choice for producing multi-carbon products (C) during CO electroreduction (CORR), where the CuCu pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in situ reconstruction strategy to create dynamically stable CuCuOCa motifs at the interface of exsolved Cu nanoclusters and CaCO nanospheres (Cu/CaCO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!