Background: Saccharomyces cerevisiae strains isolated from natural settings form structured biofilm colonies that are equipped with intricate protective mechanisms. These wild strains are able to reprogram themselves with a certain frequency during cultivation in plentiful laboratory conditions. The resulting domesticated strains switch off certain protective mechanisms and form smooth colonies that resemble those of common laboratory strains.
Results: Here, we show that domestication can be reversed when a domesticated strain is challenged by various adverse conditions; the resulting feral strain restores its ability to form structured biofilm colonies. Phenotypic, microscopic and transcriptomic analyses show that phenotypic transition is a complex process that affects various aspects of feral strain physiology; it leads to a phenotype that resembles the original wild strain in some aspects and the domesticated derivative in others. We specify the genetic determinants that are likely involved in the formation of a structured biofilm colonies. In addition to FLO11, these determinants include genes that affect the cell wall and membrane composition. We also identify changes occurring during phenotypic transitions that affect other properties of phenotypic strain-variants, such as resistance to the impact of environmental stress. Here we document the regulatory role of the histone deacetylase Hda1p in developing such a resistance.
Conclusions: We provide detailed analysis of transcriptomic and phenotypic modulations of three related S. cerevisiae strains that arose by phenotypic switching under diverse environmental conditions. We identify changes specifically related to a strain's ability to create complex structured colonies; we also show that other changes, such as genome rearrangement(s), are unrelated to this ability. Finally, we identify the importance of histone deacetylase Hda1p in strain resistance to stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930820 | PMC |
http://dx.doi.org/10.1186/1471-2164-15-136 | DOI Listing |
Soft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFJADA Found Sci
October 2024
Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8).
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis 11757, Egypt.
This work aimed to synthesize a new acetyl triazolyl uracil (UT) compound and subsequently utilize it to obtain a new chitosan-based Schiff base polymer (CH-UT). The new derivative was characterized using elemental analysis, FTIR, HNMR, XRD, TGA, DSC, and SEM analyses. Both UT and CH-UT were evaluated for their antibacterial activities against various Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing, 100050, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:
De novo design of antimicrobial peptides is a pivotal strategy for developing new antibacterial agents, leveraging its rapid and efficient nature. (XXYY), where X represents cationic residues, Y denotes hydrophobic residues, and n varies from 2 to 4, is a classical α-helix template. Based on which, numerous antimicrobial peptides have been synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!