AI Article Synopsis

Article Abstract

Development of effective immune therapies for cancer patients requires better understanding of hurdles that prevent the generation of effective antitumor immune responses. Administration of α-galactosylceramide (α-GalCer) in animals enhances antitumor immunity via activation of the invariant NKT (iNKT) cells. However, repeated injections of α-GalCer result in long-term unresponsiveness or anergy of iNKT cells, severely limiting its efficacy in tumor eradication. The mechanisms leading to iNKT cell anergy remain poorly understood. We report in this study that the tuberous sclerosis 1 (TSC1), a negative regulator of mTOR signaling, plays a crucial role in iNKT cell anergy. Deficiency of TSC1 in iNKT cells results in resistance to α-GalCer-induced anergy, manifested by increased expansion of and cytokine production by iNKT cells in response to secondary Ag stimulation. It is correlated with impaired upregulation of programmed death-1, Egr2, and Grail. Moreover, TSC1-deficient iNKT cells display enhanced antitumor immunity in a melanoma lung metastasis model. Our data suggest targeting TSC1/2 as a strategy for boosting antitumor immune therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965184PMC
http://dx.doi.org/10.4049/jimmunol.1302076DOI Listing

Publication Analysis

Top Keywords

inkt cells
20
invariant nkt
12
cell anergy
12
antitumor immunity
12
tuberous sclerosis
8
antitumor immune
8
inkt cell
8
inkt
7
anergy
5
antitumor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!