Crude oil impairs cardiac excitation-contraction coupling in fish.

Science

Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA.

Published: February 2014

Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1242747DOI Listing

Publication Analysis

Top Keywords

crude oil
20
excitation-contraction coupling
8
crude
5
oil
5
oil impairs
4
impairs cardiac
4
cardiac excitation-contraction
4
coupling fish
4
fish crude
4
oil disrupt
4

Similar Publications

Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.

Microlife

January 2025

Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.

Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons.

View Article and Find Full Text PDF

Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).

View Article and Find Full Text PDF

In order to determine the influence of different factors on the CO huff-and-puff displacement effect, a CO huff-and-puff experiment was carried out with Chang 6 tight sandstone samples in Ordos Basin as the research object. Combined with nuclear magnetic resonance technology, the influences of injection pressure, cycle numbers and soaking time on the CO huff-and-puff effect were evaluated, and the optimal CO huff-and-puff parameters were optimized. The microscopic degree of crude oil production in different scale pores was quantitatively characterized.

View Article and Find Full Text PDF

It is a common occurrence in the fracture processes of deep carbonate reservoirs that the fracturing construction pressure during hydraulic fracturing operation exceeds 80 MPa. The maximum pumping pressure is determined by the rated pressure of the pumping pipe equipment and the reservoir characteristics, which confine the fracture to the target area. When the pump pressure exceeds the safety limit, hydraulic fracturing has to reduce the construction displacement to prevent potential accidents caused by overpressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!