Naphthyl end-capped oligothiophenes are a class of materials well suited for high-performance organics based devices. The formation of nanofibers on muscovite mica from 2,5-bis(naphth-2-yl)thiophene (NaT), 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2), and 5,5''-bis(naphth-2-yl)-2,2':5',2''-terthiophene (NaT3) as well as of the methoxy-functionalized variants MONaT, MONaT2, and MONaT3 is investigated via atomic force microscopy, X-ray diffraction, polarized fluorescence microscopy, and fluorescence spectroscopy. From polarized fluorescence microscopy spatially resolved molecular orientations are deduced revealing a profound anisotropy. Fibers from lying molecules grow along distinct substrate directions. Methoxy-functionalization substantially increases the crystallization into aligned fibers. In air Ostwald ripening is observed. The morphological variations of the aggregates result in specific optical signatures, disclosed by temperature dependent and spatially resolved fluorescence spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp53881hDOI Listing

Publication Analysis

Top Keywords

naphthyl end-capped
8
end-capped oligothiophenes
8
polarized fluorescence
8
fluorescence microscopy
8
spatially resolved
8
substrate steered
4
steered crystallization
4
crystallization naphthyl
4
oligothiophenes nanofibers
4
nanofibers influence
4

Similar Publications

We report on the microstructure, morphology, and growth of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) thin films deposited on graphene, characterized by grazing incidence X-ray diffraction (GIXRD) and complemented by atomic force microscopy (AFM) measurements. NaT2 is deposited on two types of graphene surfaces: custom-made samples where chemical vapor deposition (CVD)-grown graphene layers are transferred onto a Si/SiO substrate by us and common commercially transferred CVD graphene on Si/SiO. Pristine Si/SiO substrates are used as a reference.

View Article and Find Full Text PDF

Naphthyl End-Capped Terthiophene-Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring.

Chem Asian J

August 2019

Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.

A reliable and sensitive detection of biogenic amines (BAs) is essential to ensure food safety and maintain public health. In this study, two naphthyl end-capped terthiophene derivatives, namely, 5-(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T) and 5,5''-di(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T-NA), were employed to develop chemiresistive sensors for detecting gaseous BAs. In contrast to NA-3T, the NA-3T-NA-based sensor showed a higher sensitivity for trimethylamine (TMA) with an experimental detection limit lower than 22 ppm, and for aromatic BAs, including dopamine, histamine, tryptamine, and tyramine.

View Article and Find Full Text PDF

To investigate the electroluminescent (EL) properties of fluorescent materials based on fluorene-substituted naphthalene, multilayered OLEDs with the following sequence; indium- tin-oxide (ITO)/N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) (50 nm)/Blue emitting materials (30 nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm) were fabricated using these materials as emitters. These devices exhibited blue emissions. Particularly, a device using 7-(1-(1-(2-(diphenylamino)-9,9-diethyl-9H-fluoren-7- yl)naphthalen-4-yl)naphthalen-4-yl)-9,9-diethyl-N,N-diphenyl-9H-fluoren-2-amine as a blue emitting material exhibited blue emission with a luminous efficiency, a power efficiency, an external quantum efficiency, and CIE coordinates of 2.

View Article and Find Full Text PDF

We have designed emitters based on Anthracene-Aryl-Anthracene moieties end-capped with 1-naphthyl groups. In particular, a device showed blue EL properties with luminous and power efficiencies of 1.95 cd/A and 0.

View Article and Find Full Text PDF

Naphthyl end-capped oligothiophenes are a class of materials well suited for high-performance organics based devices. The formation of nanofibers on muscovite mica from 2,5-bis(naphth-2-yl)thiophene (NaT), 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2), and 5,5''-bis(naphth-2-yl)-2,2':5',2''-terthiophene (NaT3) as well as of the methoxy-functionalized variants MONaT, MONaT2, and MONaT3 is investigated via atomic force microscopy, X-ray diffraction, polarized fluorescence microscopy, and fluorescence spectroscopy. From polarized fluorescence microscopy spatially resolved molecular orientations are deduced revealing a profound anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!