Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autophagy is required for the maintenance of cardiomyocytes homeostasis. However, the abnormal autophagy could lead to the development of heart failure. Autophagy is enhanced during myocardial ischemia/reperfusion; it remains to elucidate the molecular regulation of autophagy. We report here that miR-325, ARC and E2F1 constitute an axis that regulates autophagy. Our results showed that miR-325 expression is upregulated upon anoxia/reoxygenation and ischemia/reperfusion. Cardiomyocyte-specific overexpression of the miR-325 potentiates autophagic responses and myocardial infarct sizes, whereas knockdown of miR-325 inhibited autophagy and cell death. We searched for the downstream mediator of miR-325 and identified that ARC is a target of miR-325. ARC transgenic mice could attenuate autophagy and myocardial infarction sizes upon pressure-overload-induced heart failure, whereas ARC null mice exhibited an increased autophagic accumulation in the heart. The suppression of ARC by miR-325 led to its inability to repress autophagic program. In exploring the molecular mechanism by which miR-325 expression is regulated, our results revealed that the transcription factor E2F1 contributed to promote miR-325 expression. E2F1 null mice demonstrated reduced autophagy and myocardial infarction sizes upon ischemia/reperfusion. Our present study reveals a novel autophagic regulating model that is composed of E2F1, miR-325 and ARC. Modulation of their levels may provide a new approach for tackling cardiac failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013515 | PMC |
http://dx.doi.org/10.1038/cdd.2014.18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!