The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891567 | PMC |
http://dx.doi.org/10.2147/IJN.S49882 | DOI Listing |
J Ovarian Res
January 2025
College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Background: The benefit of cytoreduction with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) for epithelial ovarian cancer (EOC) remains uncertain. This study investigated the relationship between serum cytokines, particularly monocyte chemoattractant protein-1 (MCP-1), a key inflammatory mediator, and recurrence risk in EOC patients undergoing CRS/HIPEC.
Methods: From January 2018 to January 2023, serum cytokine levels were analyzed in 34 EOC patients (17 primary, 17 recurrent) before and after CRS/HIPEC using MILLIPLEX Magnetic Bead Panels.
Sci Adv
January 2025
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement.
View Article and Find Full Text PDFPharmaceutics
December 2024
i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Background/objectives: The unique properties of iron oxide nanoparticles have attracted significant interest within the biomedical community, particularly for magnetic hyperthermia applications. Various synthesis methods have been developed to optimize these nanoparticles.
Methods: In this study, we employed a powdered coconut water (PCW)-assisted sol-gel method to produce magnetite nanoparticles for the first time.
Materials (Basel)
December 2024
National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania.
Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Biomedical Engineering Department, Faculty of Engineering and Architecture, Istanbul Yeni Yüzyıl University, Istanbul 34010, Türkiye.
Magnetic nanoparticles have attracted significant attention in nanoscience and nanotechnology due to their unique physicochemical properties. These properties enable their great potential in various biomedical applications, such as hyperthermia, drug delivery, tissue engineering, theranostics, and lab-on-a-chip technologies. Physical and chemical methods are conventionally used for the synthesis of nanoparticles; however, due to several limitations of these methods, research focus has recently shifted towards developing clean and eco-friendly synthesis protocols while maintaining their desirable chemical and physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!