In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance--the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958865 | PMC |
http://dx.doi.org/10.3390/ijms15022517 | DOI Listing |
Plant Physiol
December 2024
Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
Mol Biotechnol
November 2024
Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China.
Seed samples of two types of chickpea (Cicer arietinum Linn.), including variety A (NRCGR-4452) and variety B (local varieties), with different seed colors, were collected every five days for a total of four times during the seed development period. Non-targeted metabolome and transcriptome sequencing were conducted to identify differentially expressed genes and metabolites associated with chickpea seed coat color.
View Article and Find Full Text PDFPeerJ
September 2024
College of Forestry and Landscape Architecture, Xinjiang Agriculture University, Urumqi, China.
The codling moth () has a major effect on the quality and yield of walnut fruit. Plant defences respond to insect infestation by activating hormonal signalling and the flavonoid biosynthetic pathway. However, little is known about the role of walnut husk hormones and flavonoid biosynthesis in response to infestation.
View Article and Find Full Text PDFPlanta
July 2024
State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China.
TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses.
View Article and Find Full Text PDFPlant Cell
October 2024
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China.
The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!