Insulin diffusion and self-association characterized by real-time UV imaging and Taylor dispersion analysis.

J Pharm Biomed Anal

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:

Published: April 2014

Assessment of release kinetics of subcutaneously administered protein therapeutics remains a complex challenge. In vitro methods capable of visualizing and characterizing drug transport properties, in the formulation as well as surrounding subcutaneous tissue environment, are desirable in drug development. Diffusion is a key process in drug release and transport. Thus, our objective was to develop a UV imaging in vitro method for direct visualization and characterization of insulin diffusivity and self-association behavior. Agarose hydrogels were used for mimicking subcutaneous tissue. Diffusivity, self-association, and apparent size of insulin were further characterized by Taylor dispersion analysis, size exclusion chromatography, and dynamic light scattering. At low insulin concentrations and pH 3.0, the hydrodynamic radius of insulin was determined by Taylor dispersion analysis to 1.5±0.1nm, corresponding to the size of insulin monomer. Increasing concentration and pH to 1mM and pH 7.4, respectively, favoring insulin hexamers, increased the insulin hydrodynamic radius to 3.0±0.1nm. The UV imaging method developed was adequately sensitive to identify and characterize, in terms of diffusion coefficients, the changes in insulin transport in hydrogel due to pH and concentration changes. In conclusion, UV imaging allowed insulin diffusion in hydrogel matrixes to be studied in real-time, and showed that insulin self-association properties were reflected in the diffusion behavior. UV imaging is a useful tool for characterization of the influence of environmental conditions on protein mass transport. Hydrogels combined with UV imaging may be of utility for in vitro testing of protein therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2014.01.022DOI Listing

Publication Analysis

Top Keywords

taylor dispersion
12
dispersion analysis
12
insulin
11
insulin diffusion
8
protein therapeutics
8
subcutaneous tissue
8
diffusivity self-association
8
size insulin
8
hydrodynamic radius
8
imaging
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!