In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two-leucine residues. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2014.01.027 | DOI Listing |
bioRxiv
October 2024
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Unlabelled: possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome.
View Article and Find Full Text PDFPNAS Nexus
November 2024
Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
The titan arum (), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants.
View Article and Find Full Text PDFPlant Biotechnol J
November 2024
Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC.
Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost.
View Article and Find Full Text PDFInt J Parasitol
October 2024
Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands. Electronic address:
Acanthamoebae, pathogenic free-living amoebae, can cause Granulomatous Amoebic Encephalitis (GAE) and keratitis, and for both types of infection, no adequate treatment options are available. As the metabolism of pathogens is an attractive treatment target, we set out to examine the energy metabolism of Acanthamoeba castellanii and studied the aerobic and anaerobic capacities of the trophozoites. Under anaerobic conditions, or in the presence of inhibitors of the electron-transport chain, A.
View Article and Find Full Text PDFMicroorganisms
September 2024
Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!