Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage.

Gastroenterology

Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Electronic address:

Published: June 2014

AI Article Synopsis

  • Helicobacter pylori infection leads to increased spermine oxidase (SMOX) levels in gastric cells, causing oxidative stress, DNA damage, and affecting apoptosis, particularly in a resistant cell population.
  • In experiments with mouse models and cell cultures, reduced EGFR activity resulted in lower SMOX expression and increased apoptosis, highlighting the potential role of EGFR signaling in mediating these effects.
  • Analysis of human gastric tissue samples revealed a correlation between SMOX and disease progression, with heightened levels of phosphorylated EGFR and related markers in tissues from patients with gastritis compared to those with cancer, suggesting their involvement in the disease's development.

Article Abstract

Background & Aims: The gastric cancer-causing pathogen Helicobacter pylori up-regulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOX(high) cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects.

Methods: SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H. pylori-infected Egfr(wa5) mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. A phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsy specimens from Colombian and Honduran cohorts were analyzed by immunohistochemistry.

Results: SMOX expression and DNA damage were decreased, and apoptosis increased in H. pylori-infected Egfr(wa5) mice. H. pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damage(high) apoptosis(low) cells. Phosphoproteomic analysis showed increased EGFR and erythroblastic leukemia-associated viral oncogene B (ERBB)2 signaling. Immunoblot analysis showed the presence of a phosphorylated (p)EGFR-ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damage(high) apoptosis(low) cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR-ERBB2, and pERBB2 were increased predominantly in tissues showing gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR-ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress.

Conclusions: In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035375PMC
http://dx.doi.org/10.1053/j.gastro.2014.02.005DOI Listing

Publication Analysis

Top Keywords

dna damage
24
gastric epithelial
12
epithelial cells
12
apoptosis dna
12
gastric
9
helicobacter pylori
8
cells
8
dna
8
pylori-infected egfrwa5
8
egfrwa5 mice
8

Similar Publications

In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

This study evaluates the effects of hydroxytyrosol (HT), a component of olive oil, on mammographic breast density reduction. We explored effects of HT on Wnt -catenin and other pathways involved in cancer stem cell renewal, DNA repair, cell proliferation, and differentiation. Twenty-five milligrams per day oral dose of HT was given for 12 months in pre- and postmenopausal women at increased risk of breast cancer.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Chloroplast State Transitions Modulate Nuclear Genome Stability via Cytokinin Signaling in Arabidopsis.

Mol Plant

January 2025

Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:

Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!