Luteolin sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis.

Life Sci

Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; Center for General Education, Tunghai University, Taichung, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan. Electronic address:

Published: April 2014

Aims: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered to be one of the most promising candidates in research on treatments for cancer, including renal cell carcinoma (RCC). However, many cells are resistant to TRAIL-induced apoptosis which limits the potential application of TRAIL in cancer therapy. Luteolin, a naturally occurring flavonoid, has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity. In this study, we investigated whether luteolin treatment could modulate TRAIL-induced apoptosis in RCC.

Main Methods: The effect of luteolin on TRAIL sensitivity was assessed in human RCC 786-O, ACHN, and A498 cells. The underlying regulatory cascades were approached by biochemical and pharmacological strategies.

Key Findings: We found that nontoxic concentration of luteolin alone had no effect on the level of apoptosis, but a combination treatment of TRAIL and luteolin caused significant extrinsic and intrinsic apoptosis. The sensitization was accompanied by Bid cleavage, Mcl-1 and FLIP down-regulation, DR4/DR5 protein expression and cell surface presentation, and Akt and signal transducer and activator of transcription-3 (STAT3) inactivation. Among these phenomena, changes in FLIP, Akt, and, STAT3 are more prone to the effects of luteolin treatment. Studies have further demonstrated that inactivation of Akt or STAT3 alone was sufficient to down-regulate FLIP expression and sensitized 786-O cells to TRAIL-induced apoptosis.

Significance: Data from this study thus provide in vitro evidence supporting the notion that luteolin is a potential sensitizer of TRAIL in anticancer therapy against human RCC involving Akt and STAT3 inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2014.02.002DOI Listing

Publication Analysis

Top Keywords

trail-induced apoptosis
12
akt stat3
12
luteolin
8
renal cell
8
cell carcinoma
8
cells trail-induced
8
luteolin treatment
8
human rcc
8
stat3 inactivation
8
apoptosis
5

Similar Publications

Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial homeostasis. LSR is highly expressed in well-differentiated cancers, and its expression decreases during malignancy. The LSR antibody inhibits cell growth and promotes apoptosis in some cancers.

View Article and Find Full Text PDF

Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation.

View Article and Find Full Text PDF

MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A.

Exp Cell Res

January 2025

Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin 132013, Jilin Province, PR China. Electronic address:

Background: Mitochondrial ORF of the 12S rRNA type-c (MOTS-c) as an AMPK agonist can regulate the expression of adaptive nuclear genes to promote cell homeostasis. However, the investigation of MOTS-c in hepatocellular carcinoma (HCC) is insufficient. This study aims to reveal the role of MOTS-c on HCC cell apoptosis.

View Article and Find Full Text PDF

Aims: This study investigates the in vivo anticancer activity of carbenoxolone (CBX) and its role in fighting hepatocellular carcinoma (HCC) progression and alleviating resistance against doxorubicin (DOX). Moreover, the molecular mechanism of action of CBX is explored.

Methods: HCC was induced in Sprague Dawley rats via biweekly administration of thioacetamide (TAA) (200 mg/kg) intraperitoneally (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!