AI Article Synopsis

Article Abstract

This study investigated the efficacy of concurrent delivery of an anti-angiogenic drug and ultrasonic cavitation therapy in a mouse model of human colon cancer. A biotinylated form of the anti-angiogenic drug Endostar was conjugated to a streptavidin-coated microbubble (MB). Mice bearing subcutaneous tumors (HT29) were divided into 4 groups. Group 1 served as an untreated control. Group 2 served as a cavitation control and received naked microbubbles and sham ultrasonic cavitation (MB+sham cavitation). Group 3 received naked microbubbles and ultrasonic cavitation (MB+cavitation). Group 4 received Endostar loaded microbubbles and ultrasonic cavitation (Endostar-MB+cavitation). Ultrasonic cavitation was performed using a high-power custom built sonicator. Contrast-enhanced ultrasound imaging (CEUS) was used to measure tumor blood flow before and after ultrasonic cavitation. In vivo fluorescence imaging was performed to monitor changes in tumor volume. Immunohistochemistry was performed to assess CD31, VEGFR-2 and alpha-v beta-3 integrin expression within the tumor. Apoptosis of the tumor cells was determined by TUNEL assay, and ultrastructural changes within the tumor were examined by electron microcopy. Ultrasonic cavitation with Endostar-MB demonstrated a significantly greater inhibition of tumor blood flow on day 7 and tumor growth on day 16 compared with naked MB and control groups. The Endostar-MB treated mice showed significantly decreased expression VEGFR-2 and alpha-v beta-3 integrin, and increased apoptosis of tumor cells and degradation of the tumor ultrastructure. Our findings indicated that the anti-vascular and anti-tumor effects of ultrasonic cavitation could be potentiated by simultaneously delivering an anti-angiogenic drug in colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2014.01.022DOI Listing

Publication Analysis

Top Keywords

ultrasonic cavitation
36
anti-angiogenic drug
16
colon cancer
12
cavitation
11
ultrasonic
9
tumor
9
cavitation potentiated
8
concurrent delivery
8
delivery anti-angiogenic
8
drug colon
8

Similar Publications

Evaluation of bacterial biofilm, smear layer, and debris removal efficacy of a hydro-dynamic cavitation system with physiological saline using a new ex vivo model: a CLSM and SEM study.

BMC Oral Health

January 2025

Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

Introduction: To evaluate the bacterial biofilm, smear layer and debris removal efficacy of a hydro-dynamic cavitation system with physiological saline using a new ex vivo model.

Methods: Seventy-five dentin discs were prepared from fifty-four extracted teeth. Seventy-five artificial root sockets were prepared.

View Article and Find Full Text PDF

The formation of flavor in traditional Chinese rice wine requires a long aging process. To accelerate the maturation of rice wine, a 20 L scale multi-sweeping- frequency mode ultrasonic reactor was employed in this study to explore the promoting effects. Rice wines were subjected under 10 combined types of sonication treatments with 20/28/40 kHz in single/double/triple frequencies, and in fixed or sweeping modes, respectively.

View Article and Find Full Text PDF

Ultrasonically Activated Liquid Metal Catalysts in Water for Enhanced Hydrogenation Efficiency.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.

View Article and Find Full Text PDF

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Chemical corrosion resistance mechanism of titanium alloy radiation rods with self-protected structure.

Ultrason Sonochem

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.

The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!