In this paper we describe how utilization of low molecular weight alginate-derived oligosaccharide (ADO) and chito-oligosaccharide (COS) in conjunction with antibiotics, could more effectively inhibit the growth of wild-type and resistant Pseudomonas aeruginosa. Inhibition is effected by modulating the bacteria's quorum sensing (QS) system, thus regulating biofilm formation and reducing resistance to antibiotic treatment. This can be demonstrated by using conventional MIC screening. COS showed synergistic effects with azithromycin, whereas ADO indicated additive effects against wild-type P. aeruginosa. Using electrospray-ionization mass spectroscopy (ESI-MS), matrix-assisted laser desorption/ionization-time of flightmass spectroscopy (MALDI-TOF-MS) and nuclear magnetic resonance (NMR), the chemical structure of ADO and of COS was characterized. The wild-type and resistant strains were identified by 16S rRNA sequence analysis. This report demonstrates the feasibility of attenuating the tolerance of P. aeruginosa to azithromycin by using specific marine oligosaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2014.01.001DOI Listing

Publication Analysis

Top Keywords

marine oligosaccharides
8
pseudomonas aeruginosa
8
wild-type resistant
8
synergistic combination
4
combination marine
4
oligosaccharides azithromycin
4
azithromycin pseudomonas
4
aeruginosa
4
aeruginosa paper
4
paper describe
4

Similar Publications

A bifunctional endolytic alginate lyase with two different lyase catalytic domains from sp. H204.

Front Microbiol

December 2024

Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.

View Article and Find Full Text PDF

Green algae, particularly species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF
Article Synopsis
  • Carrageenan oligosaccharides show promising biological activities and can be produced using carrageenases from a newly identified marine bacterium, Shewanella sp. LE8.
  • The study characterizes κ-, ι-, and λ-carrageenases produced by this bacterium, revealing that its crude enzyme was effective in degrading specific types of carrageenan under different conditions.
  • Findings from molecular weight distribution and analysis of hydrolysates indicate that the degradation process involves not only enzymatic action but also sulfatase participation, suggesting a potential for industrial applications of the oligosaccharides produced.
View Article and Find Full Text PDF

Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!