Preparation of polysaccharide derivates chitosan-graft-poly(ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery.

Colloids Surf B Biointerfaces

State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Published: April 2014

Biodegradable graft copolymer, chitosan-graft-poly(ɛ-caprolactone) (CS-g-PCL) was synthesized via ring opening polymerization and characterized by (1)H NMR and FTIR spectroscopy. Then graft copolymers were self-assembled into micelles as drug delivery system. To evaluate drug-polymer compatibility, the Flory-Huggins interaction parameter between 5-fluorouraci (5-Fu) and hydrophobic segment was calculated. The result was in agreement with experimental data from drug loading content and drug loading efficiency. Meanwhile, DLS and TEM were utilized to evaluate the trend of particle size and morphology in aqueous solution with different repeating units of ɛ-CL. The in vitro drug release data was fitted with three kinetic models, usually applied in the drug delivery system. Results indicated that the release of 5-Fu was controllable and the release half-time could reach as long as 54.46 h, much slower than that of free 5-Fu. Cytotoxicity evaluation and cellular apoptosis study suggested good biocompatibility of CS-g-PCL micelles. Moreover, 5-Fu loaded micelles could delay the release of drug and exert comparable cytotoxicity against A549 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.01.026DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
delivery system
8
drug loading
8
drug
7
preparation polysaccharide
4
polysaccharide derivates
4
derivates chitosan-graft-polyɛ-caprolactone
4
chitosan-graft-polyɛ-caprolactone amphiphilic
4
amphiphilic copolymer
4
micelles
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells.

View Article and Find Full Text PDF

β-Glucuronidase-Responsive Albumin-Binding Prodrug of Colchicine-Site Binders for Selective cancer Therapy.

ChemMedChem

January 2025

UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.

The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.

View Article and Find Full Text PDF

Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!