A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. | LitMetric

AI Article Synopsis

  • T-lymphocytes, particularly Th17-cells, play a critical role in inflammation associated with chronic obstructive pulmonary disease (COPD), and acetylcholine (ACh) may promote Th17 cell activity.
  • In a study involving COPD patients, healthy smokers, and healthy controls, researchers found increased expression of ACh and related cytokines in T-cells from COPD patients.
  • Treatments with Tiotropium and Olodaterol were effective in reducing Th17 cell co-expression while increasing regulatory T-cells (FOXP3+), suggesting these medications might help manage inflammation in COPD by influencing T-cell responses.

Article Abstract

T-lymphocytes, including Th17-cells and T-cells expressing acetylcholine (ACh), are key components of systemic inflammation in chronic obstructive pulmonary disease (COPD). We investigated whether ACh promotes Th17 cells in COPD. ACh, IL-17A, IL-22, RORγt, FOXP3 expression and AChIL-17A, AChIL-22, AChRORγt coexpression was evaluated in peripheral blood mononuclear cells (PBMC) from COPD patients (n=16), healthy smokers (HS) (n=12) and healthy control subjects (HC) (n=13) (cultured for 48 h with PMA) by flow cytometry. Furthermore, we studied the effect of Tiotropium (Spiriva®) (100 nM) and Olodaterol (1nM) alone or in combination, and of hemicholinium-3 (50 μM) on AChIL-17A, AChIL-22, AChRORγt, and FOXP3 expression in CD3+PBT-cells of PBMC from COPD patients (n=6) cultured for 48 h with PMA. CD3+PBT-cells expressing ACh, IL-17A, IL-22 and RORγt together with CD3+PBT-cells co-expressing AChIL-17A, AChIL-22 and AChRORγt were significantly increased in COPD patients compared to HC and HS subjects with higher levels in HS than in HC without a significant difference. CD3+FOXP3+PBT-cells were increased in HS than in HC and COPD. Tiotropium and Olodaterol reduced the percentage of CD3+PBT-cells co-expressing AChIL-17A, AChIL-22, and AChRORγt while increased the CD3+FOXP3+PBT-cells in PBMC from COPD patients, cultured in vitro for 48 h, with an additive effect when used in combination. Hemicholnium-3 reduced the percentage of ACh+IL-17A+, ACh+IL-22+, and ACh+RORγt+ while it did not affect FOXP3+ expression in CD3+PBT-cells from cultured PBMC from COPD patients. We concluded that ACh might promote the increased levels of Th17-cells in systemic inflammation of COPD. Long-acting β2-agonists and anticholinergic drugs might contribute to control this event.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2014.01.004DOI Listing

Publication Analysis

Top Keywords

copd patients
24
achil-17a achil-22
16
achil-22 achrorγt
16
pbmc copd
16
copd
10
increased levels
8
th17 cells
8
systemic inflammation
8
ach il-17a
8
il-17a il-22
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!