Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2014.01.047 | DOI Listing |
JSES Int
November 2024
Department of Orthopaedic Surgery, University of Iowa, Iowa City, IA, USA.
Background: Limitations to using the knee as donor cartilage include cartilage thickness mismatch and donor site morbidity. Using the radial head as donor autograft for capitellar lesions may allow for local graft harvest without distant donor site morbidity. The purpose of this study is to demonstrate the feasibility of performing local osteochondral autograft transfer from the nonarticular cartilaginous rim of the radial head to the capitellum.
View Article and Find Full Text PDFRhinoplasty is one of the major surgical procedures most popular and it is generally performed modelling the internal bones and cartilage using a closed approach to reduce the damage of soft tissue, whose final shape is determined by means of their new settlement over the internal remodelled rigid structures. An optimal planning, achievable thanks to advanced acquisition of 3D images and thanks to the virtual simulation of the intervention via specific software. Anyway, the final result depends also on factors that cannot be totally predicted regarding the settlement of soft tissues on the rigid structures, and a final objective check would be useful to eventually perform some adjustments before to conclude the intervention.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Physiology, College of Medicine Gyeongsang National University Jinju Republic of Korea.
Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.
View Article and Find Full Text PDFOsteoarthr Cartil Open
March 2025
Department of Mechanical Engineering and Materials Science, Duke University, United States.
Objective: We sought to measure the deformation of tibiofemoral cartilage immediately following a 3-mile treadmill run, as well as the recovery of cartilage thickness the following day. To enable these measurements, we developed and validated deep learning models to automate tibiofemoral cartilage and bone segmentation from double-echo steady-state magnetic resonance imaging (MRI) scans.
Design: Eight asymptomatic male participants arrived at 7 a.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!