Microsatellite loci comprise an important part of eukaryotic genomes. Their applications in biology as genetic markers are related to numerous fields ranging from paternity analyses to construction of genetic maps and linkage to human disease. Existing software solutions which offer pattern discovery algorithms for the correct identification and downstream analysis of microsatellites are scarce and are proving to be inefficient to analyze large, exponentially increasing, sequenced genomes. Moreover, such analyses can be very difficult for bioinformatically inexperienced biologists. In this paper we present Microsatellite Genome Analysis (MiGA) software for the detection of all microsatellite loci in genomic data through a user friendly interface. The algorithm searches exhaustively and rapidly for most microsatellites. Contrary to other applications, MiGA takes into consideration the following three most important aspects: the efficiency of the algorithm, the usability of the software and the plethora of offered summary statistics. All of the above, help biologists to obtain basic quantitative and qualitative information regarding the presence of microsatellites in genomic data as well as downstream processes, such as selection of specific microsatellite loci for primer design and comparative genome analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2014.01.002 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Childs Nerv Syst
January 2025
Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.
Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.
Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.
Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!