Background: Royal jelly (RJ) is a proteinaceous secretion produced from the hypopharyngeal and mandibular glands of nurse bees. It plays vital roles in honeybee biology and in the improvement of human health. However, some proteins remain unknown in RJ, and mapping N-glycosylation modification sites on RJ proteins demands further investigation. We used two different liquid chromatography-tandem mass spectrometry techniques, complementary N-glycopeptide enrichment strategies, and bioinformatic approaches to gain a better understanding of novel and glycosylated proteins in RJ.

Results: A total of 25 N-glycosylated proteins, carrying 53 N-glycosylation sites, were identified in RJ proteins, of which 42 N-linked glycosylation sites were mapped as novel on RJ proteins. Most of the glycosylated proteins were related to metabolic activities and health improvement. The 13 newly identified proteins were also mainly associated with metabolic processes and health improvement activities.

Conclusion: Our in-depth, large-scale mapping of novel glycosylation sites represents a crucial step toward systematically revealing the functionality of N-glycosylated RJ proteins, and is potentially useful for producing a protein with desirable pharmacokinetic and biological activity using a genetic engineering approach. The newly-identified proteins significantly extend the proteome coverage of RJ. These findings contribute vital and new knowledge to our understanding of the innate biochemical nature of RJ at both the proteome and glycoproteome levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942810PMC
http://dx.doi.org/10.1186/1471-2164-15-135DOI Listing

Publication Analysis

Top Keywords

proteins
11
novel proteins
8
n-glycosylation sites
8
royal jelly
8
glycosylated proteins
8
n-glycosylated proteins
8
identified proteins
8
glycosylation sites
8
health improvement
8
sites
5

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Protocol for the purification of the plastid-encoded RNA polymerase from transplastomic tobacco plants.

STAR Protoc

January 2025

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.

View Article and Find Full Text PDF

Ergosterol alleviates hepatic steatosis and insulin resistance via promoting fatty acid β-oxidation by activating mitochondrial ACSL1.

Cell Rep

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:

Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.

View Article and Find Full Text PDF

The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!