Numerous pathogenic Gram-negative bacteria use a type three secretion apparatus (T3SA) to translocate effector proteins into host cells. Detecting and monitoring the T3SA of intracellular bacteria within intact host cells has been challenging. Taking advantage of the tight coupling between T3S effector-gene transcription and T3SA activity in Shigella flexneri, together with a fast-maturing green fluorescent protein, we developed reporters to monitor T3SA activity in real time. These reporters reveal a dynamic temporal regulation of the T3SA during the course of infection. T3SA is activated initially during bacterial entry and downregulated subsequently when bacteria gain access to the host cell cytoplasm, allowing replenishment of the bacterial stores of T3S substrates necessary for invading neighboring cells. Reactivation of the T3SA was strictly dependent on actin-based motility and formation of plasma membrane protrusions during cell-to-cell spread. Thus, the T3SA is subject to a tight on/off regulation within the bacterial intracellular niche.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2014.01.005 | DOI Listing |
ACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFPhysiol Plant
January 2025
National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory HO may entrain negative feedback regulation of GOX in an age-dependent manner.
View Article and Find Full Text PDFACS Synth Biol
January 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.
The probiotic Nissle (EcN) is an exceptional strain that has attracted significant attention not only for its clinical efficacy in the treatment and prevention of gastrointestinal disorders but also as a burgeoning microbial chassis for living therapeutic applications. However, there is an immediate necessity to develop conditional expression systems that confine the activity of EcN specifically in the gastrointestinal tract, to avoid influencing the environment. Here, we constructed two genetically encoded interchangeable sensors responsive to body temperature at 37 °C, and small molecules such as protocatechuic acid (PCA), a metabolite found in green tea.
View Article and Find Full Text PDFNanoscale
January 2025
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
CsCuI is considered a promising material for lead-free resistive switching (RS) memory devices due to its low operating voltage, high on/off ratio, and excellent thermal and environmental stability. However, conventional lead-free halide-based RS memory devices typically require solvent-based thin-film formation processes that involve toxic organic and acidic solvents, and the effects of process conditions on device performance are often not fully understood. This study investigates the effect of crystallinity on CsCuI-based RS memory devices fabricated thermal evaporation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!