Background: X-linked Charcot-Marie-Tooth disease type 5 (CMTX5), Arts syndrome, and non-syndromic sensorineural deafness (DFN2) are allelic syndromes, caused by reduced activity of phosphoribosylpyrophosphate synthetase 1 (PRS-I) due to loss-of-function mutations in PRPS1. As only few families have been described, knowledge about the relation between these syndromes, the phenotypic spectrum in patients and female carriers, and the relation to underlying PRS-I activity is limited.

Methods: We investigated a family with a novel PRPS1 mutation (c.830A > C, p.Gln277Pro) by extensive phenotyping, MRI, and genetic and enzymatic tests.

Results: The male index subject presented with an overlap of CMTX5 and Arts syndrome features, whereas his sister presented with prelingual DFN2. Both showed mild parietal and cerebellar atrophy on MRI. Enzymatically, PRS-I activity was undetectable in the index subject, reduced in his less affected sister, and normal in his unaffected mother.

Conclusions: Our findings demonstrate that CMTX5, Arts syndrome and DFN2 are phenotypic clusters on an intrafamilial continuum, including overlapping phenotypes even within individuals. The respective phenotypic presentation seems to be determined by the exact PRPS1 mutation and the residual enzyme activity, the latter being largely influenced by the degree of skewed X-inactivation. Finally, our findings show that brain atrophy might be more common in PRPS1-disorders than previously thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931488PMC
http://dx.doi.org/10.1186/1750-1172-9-24DOI Listing

Publication Analysis

Top Keywords

arts syndrome
16
prps1 mutation
12
cmtx5 arts
12
x-linked charcot-marie-tooth
8
charcot-marie-tooth disease
8
family novel
8
novel prps1
8
prs-i activity
8
arts
4
disease arts
4

Similar Publications

Introduction: Phosphoribosyl pyrophosphate synthetase 1 () is an X-linked gene critical for nucleotide metabolism. Pathogenic variants cause three overlapping phenotypes: Arts syndrome (severe neurological disease), Charcot-Marie-Tooth type 5 [CMTX5] (peripheral neuropathy), and non-syndromic sensorineural hearing loss (SNHL). Each may be associated with retinal dystrophy.

View Article and Find Full Text PDF

Phospho-ribosyl-pyrophosphate synthetase 1 (PRPS1) deficiency is secondary to loss of function variants in . This enzyme generates phospho-ribosyl-pyrophosphate (PRPP), which is utilized in the synthesis of purines, nicotinamide adenine dinucleotide (NAD), and NAD phosphate (NADP), among other metabolic pathways. Arts syndrome, or severe PRPS1 deficiency, is an X-linked condition characterized by congenital sensorineural hearing loss, optic atrophy, developmental delays, ataxia, hypotonia, and recurrent infections that can cause progressive clinical decline, often resulting in death before 5 years of age.

View Article and Find Full Text PDF

Phosphoribosylpyrophosphate synthetase 1 (PRS-I) is an enzyme involved in nucleotide metabolism. Pathogenic variants in the are rare and PRS-I deficiency can manifest as three clinical syndromes: X-linked non-syndromic sensorineural deafness (DFN2), X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5) and Arts syndrome. We present a Slovenian patient with PRS-I enzyme deficiency due to a novel pathogenic variant - c.

View Article and Find Full Text PDF

Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation.

Nat Chem Biol

January 2024

Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.

O-linked β-N-acetyl glucosamine (O-GlcNAc) is at the crossroads of cellular metabolism, including glucose and glutamine; its dysregulation leads to molecular and pathological alterations that cause diseases. Here we report that O-GlcNAc directly regulates de novo nucleotide synthesis and nicotinamide adenine dinucleotide (NAD) production upon abnormal metabolic states. Phosphoribosyl pyrophosphate synthetase 1 (PRPS1), the key enzyme of the de novo nucleotide synthesis pathway, is O-GlcNAcylated by O-GlcNAc transferase (OGT), which triggers PRPS1 hexamer formation and relieves nucleotide product-mediated feedback inhibition, thereby boosting PRPS1 activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!