Sensitive detection of tetrabromobisphenol A (TBBPA) and its derivatives, a group of emerging toxic contaminants, is highly necessitated in environmental investigation. Herein a novel analytical strategy based on reactive extractive electrospray ionization (EESI) tandem mass spectrometry for detection of tetrabromobisphenol A bis(2-hydroxyethyl ether) (TBBPA-BHEE), tetrabromobisphenol A bis(glycidyl ether) (TBBPA-BGE), tetrabromobisphenol A bis(allylether) (TBBPA-BAE), and tetrabromobisphenol S bis(allylether) (TBBPS-BAE) in industrial waste water samples was developed. Active silver cations (Ag(+)), generated by electrospraying a silver nitrate methanol solution (10 mg L(-1)), collides the neutral TBBPA derivatives molecules in the EESI source to form [M+Ag](+) complexes of the analytes under the ambient conditions. Upon collision-induced dissociation (CID), characteristic fragments of the [M+Ag](+) complexes were identified for confident and sensitive detection of the four TBBPA derivatives. Under the optimized experimental conditions, the instrumental limits of detection (LODs) of TBBPA-BHEE, TBBPA-BGE, TBBPA-BAE and TBBPS-BAE were 0.37, 0.050, 0.76, and 4.6 μg L(-1), respectively. The linear ranges extended to 1000 μg L(-1) (R(2)≥0.9919), and the relative standard deviations (RSDs), inter-day variation and intra-day variation were less than 7.8% (n=9), 10.0% (n=5), and 14.8% (n=1 per day for 5 days) for all derivatives. TBBPA derivative manufacturing industrial waste water, river water and tap water samples were fast analyzed with the proposed method. The contents of TBBPA derivatives were various in the collected samples, with the highest 19.9±0.3 μg L(-1) of TBBPA-BAE in the waste water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.01.035 | DOI Listing |
Mol Cell Endocrinol
December 2024
Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands.
Adequate levels of thyroid hormones (THs) in the fetal brain are vital for early neurodevelopment. Most of the TH in fetal brain is derived from circulating thyroxine (T4), which gets locally converted into the biologically active triiodothyronine (T3) by deiodinase enzymes. One of the major routes of TH into the brain is through the blood-cerebrospinal fluid barrier (BCSFB).
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China. Electronic address:
Tetrabromobisphenol A (TBBPA) is one of the brominated flame retardants (BFRs) widely used in industry, which has a broad toxic effect on organisms. However, there is still limited research on the neurotoxic mechanism of TBBPA. Using mouse hippocampal neurons (HT22) cells, the toxicity of TBBPA was evaluated, especially focusing on its alteration on the key molecules in FAM171A2-GRN-NF-κB signaling pathway.
View Article and Find Full Text PDFToxicology
January 2025
Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan. Electronic address:
Tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR), has been implicated as the neurotoxic effects in mammalian. However, the exact mechanisms underlying TBBPA-induced neurotoxicity remain unclear. In the present study, Neuro-2a cells, a mouse neural crest-derived cell line, were used to examine the mechanism of TBBPA-induced neuronal cytotoxicity.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China. Electronic address:
Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. TBBPA is a persistent pollutant that is difficult to degrade and causes sustained pollution to the environment. TBBPA has been detected in human blood and tissues, and studies indicate it causes various toxicological damages to tissues and cells.
View Article and Find Full Text PDFChemosphere
October 2024
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China. Electronic address:
Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!