Symbiosis is well known to influence bacterial symbiont genome evolution and has recently been shown to shape eukaryotic host genomes. Intriguing patterns of host genome evolution, including remarkable numbers of gene duplications, have been observed in the pea aphid, a sap-feeding insect that relies on a bacterial endosymbiont for amino acid provisioning. Previously, we proposed that gene duplication has been important for the evolution of symbiosis based on aphid-specific gene duplication in amino acid transporters (AATs), with some paralogs highly expressed in the cells housing symbionts (bacteriocytes). Here, we use a comparative approach to test the role of gene duplication in enabling recruitment of AATs to bacteriocytes. Using genomic and transcriptomic data, we annotate AATs from sap-feeding and non sap-feeding insects and find that, like aphids, AAT gene families have undergone independent large-scale gene duplications in three of four additional sap-feeding insects. RNA-seq differential expression data indicate that, like aphids, the sap-feeding citrus mealybug possesses several lineage-specific bacteriocyte-enriched paralogs. Further, differential expression data combined with quantitative PCR support independent evolution of bacteriocyte enrichment in sap-feeding insect AATs. Although these data indicate that gene duplication is not necessary to initiate host/symbiont amino acid exchange, they support a role for gene duplication in enabling AATs to mediate novel host/symbiont interactions broadly in the sap-feeding suborder Sternorrhyncha. In combination with recent studies on other symbiotic systems, gene duplication is emerging as a general pattern in host genome evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.12627 | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan 528000, China.
To investigate the clinicopathological and genetic features of infantile rhabdomyofibrosarcoma (IRFS) with EGFR kinase domain duplication (EGFR-KDD). The clinical, morphological and immunohistochemical features of three IRFS with EGFR-KDD diagnosed from January 2022 to January 2024 at Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan, China were retrospectively analyzed using PCR or next generation sequencing technique; and related literature was reviewed. There were 1 male and 2 females, aged at presentation ranging from 1 to 4 years.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
is an important medicinal herb known as a "natural antibiotic", which has been used in Southeast Asia for thousands of years. The () gene is an important regulatory factor for plant photoperiod flowering and stress response. However, there is currently no detailed research on the genes of .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China.
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!