Molecularly imprinted PHEMAH cryogels were synthesized and used for purification of carbonic anhydrase from bovine erythrocyte. Cryogels were prepared with free radical cryopolymerization of 2-hydroxyethyl methacrylate and methacryloylamido histidine and characterized by swelling degree, macroporosity, FTIR, SEM, surface area and elemental analysis. Maximum carbonic anhydrase adsorption of molecularly imprinted PHEMAH cryogel was found to be 3.16 mg/g. Selectivity of the molecularly imprinted cryogel was investigated using albumin, hemoglobin, IgG, γ-globulin, and lysozyme as competitor proteins and selectivity ratios were found to be 15.26, 60.05, 21.88, 17.61, and 17.42, respectively. Carbonic anhydrase purity was demonstrated by SDS-PAGE and zymogram results.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2013.864663DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
16
carbonic anhydrase
16
bovine erythrocyte
8
imprinted phemah
8
molecularly
4
imprinted cryogels
4
carbonic
4
cryogels carbonic
4
anhydrase
4
anhydrase purification
4

Similar Publications

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Mycotoxins are detectable in 60-80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput.

View Article and Find Full Text PDF

Self-service aptamer-free molecularly imprinted paper-based sensor for high-sensitivity visual detection of influenza H5N1.

Analyst

January 2025

The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.

Developing low-cost self-service portable sensors to detect viruses is an important step in combating the spread of viral outbreaks. Here, we describe the development of an aptamer-free paper-based molecularly imprinted sensor for the instrument-free detection of influenza virus A (H5N1). In this sensor, Whatman paper loaded with FeO nanoparticles (WP@FeO) was prepared as a substrate upon which silicon imprinting occurred in the presence of the template virus H5N1.

View Article and Find Full Text PDF

Precipitation Polymerization-Based Molecularly Imprinted Polymers: A Novel Approach for Transdermal Curcumin Delivery.

Polymers (Basel)

December 2024

Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia.

This research describes the synthesis and characterization of a molecularly imprinted polymer (MIP) as a candidate for the transdermal delivery of curcumin. The MIP was synthesized through precipitation polymerization using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking agent. MIP characterization studies were conducted using SEM-EDX and FTIR spectroscopy to determine the morphology and interaction between curcumin and polymers.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!