Interferon regulatory factor 8 (IRF8), a transcriptional regulator in the IRF family, has been implicated in innate immunity, immune cell differentiation and tumour cell apoptosis. In the present study, we found that IRF8 is constitutively expressed in the brain and suppressed after cerebral ischaemia in a time-dependent manner. IRF8 knockout (IRF8-KO) mice, wild type (WT) mice, neuron-specific IRF8 transgenic (TG) mice and non-transgenic mice were used in a transient cerebral ischaemic model. The IRF8 knockout mice exhibited aggravated apoptosis, inflammation and oxidative injury in the ischaemic brain, eventually leading to poorer stroke outcomes, whereas neuron-specific IRF8 transgenic mice showed a marked inhibition of apoptosis and improved stroke outcomes. To model ischaemia/reperfusion conditions in vitro, primary cortical neurons were cultured and subjected to transient oxygen and glucose deprivation for 60 min. Similar to the in vivo study, IRF8 knockdown by Ad-shIRF8 resulted in increased apoptosis, whereas IRF8 over-expression by Ad-IRF8 significantly decreased neuronal apoptosis. These data indicate that IRF8 is strongly protective in ischaemic stroke by regulating neuronal apoptosis, the inflammatory response and oxidative stress. In the present study, we found that the transcriptional factor IRF8 plays a protective role in the cerebral ischaemic-reperfusion injury by attenuating neuronal apoptosis, oxidative stress and inflammation. Besides the known function of IRF8 in regulating the inflammatory gene expression, we first demonstrated that IRF8 can directly modulate apoptosis and oxidative stress by controlling the relative genes expression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.12682DOI Listing

Publication Analysis

Top Keywords

irf8
12
neuronal apoptosis
12
oxidative stress
12
interferon regulatory
8
regulatory factor
8
cerebral ischaemic-reperfusion
8
ischaemic-reperfusion injury
8
factor irf8
8
apoptosis
8
study irf8
8

Similar Publications

Utilising bioinformatics and systems biology methods to uncover the impact of dermatomyositis on interstitial lung disease.

Clin Exp Rheumatol

January 2025

Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Objectives: Dermatomyositis (DM) is frequently associated with interstitial lung disease (ILD); however, the molecular mechanisms underlying this association remain unclear. This study aimed to employ bioinformatics approaches to identify potential molecular mechanisms linking DM and ILD.

Methods: GSE46239 and GSE47162 were analysed to identify common differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematologic tumor with poor prognosis and significant clinical heterogeneity. By integrating transcriptomic data, single-cell RNA sequencing data and independently collected RNA sequencing data this study aims to identify key genes in AML and establish a prognostic assessment model to improve the accuracy of prognostic prediction.

Materials And Methods: We analyzed RNA-seq data from AML patients and combined it with single-cell RNA sequencing data to identify genes associated with AML prognosis.

View Article and Find Full Text PDF

Comprehensive analysis of IRF8-related genes and immune characteristics in lupus nephritis.

Front Pharmacol

December 2024

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.

Background: There are currently no reliable diagnostic biomarkers or treatments for lupus nephritis (LN), a complication of systemic lupus erythematosus. Objective: We aimed to explore gene networks and potential biomarkers for LN by analyzing the GSE32591 and GSE113342 datasets from the Gene Expression Omnibus database, focusing on and -related genes.

Methods: We used differential expression analysis, functional enrichment, protein-protein interaction (PPI) network construction, and the CIBERSORT algorithm for immune infiltration assessment.

View Article and Find Full Text PDF

Long noncoding RNAs are emerging as critical regulators of biological processes. While there are over 20,000 lncRNAs annotated in the human genome we do not know the function for the majority. Here we performed a high-throughput CRISPRi screen to identify those lncRNAs that are important in viability in human monocytes using the cell line THP1.

View Article and Find Full Text PDF

Novel Perspective on Sevoflurane-Induced Cognitive Dysfunction: Implications of Neuronal SIRPα and Microglial Synaptic Remodeling.

ACS Chem Neurosci

December 2024

Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.

This study aims to investigate the role of neuronal SIRPα and microglial synaptic remodeling in sevoflurane-induced cognitive dysfunction in newborn mice. Newborn mice were exposed to sevoflurane, followed by behavioral assessments and single-cell transcriptome sequencing of cortical cells. Lentivirus-mediated overexpression of neuronal SIRPα and assessment of the microglial morphology and synaptic function were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!