The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981502PMC
http://dx.doi.org/10.1111/joa.12167DOI Listing

Publication Analysis

Top Keywords

surfactant replacement
24
replacement therapy
24
lung transplantation
12
warm ischaemia
12
surfactant
8
non-heart-beating donor
8
nhbd lungs
8
overcome shortage
8
lung grafts
8
i/r injury
8

Similar Publications

Solvent induced method for preparation of multi-advantage carrageenan films.

Int J Biol Macromol

January 2025

Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou 350000, China. Electronic address:

Carrageenan has good film-forming characteristics, but it is difficult to simultaneously improve its multiple performances, such as water-resistance, light transmittance and thermal stability. In this study, multi-advantage composite films were prepared by iota-carrageenan and quaternary ammonium surfactants according to solvent induced method. The weight change, FTIR and thermogravimetric analyses of the films before and after solvent inducement indicated that the inorganic counterions of iota-carrageenan were replaced by quaternary ammonium ions.

View Article and Find Full Text PDF

Facile On-Substrate Fabrication of Silver Coordination Polymer Nanowires for Sustainable and Efficient Water Disinfection.

ACS Appl Mater Interfaces

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Silver, as the oldest antibacterial material, has been almost replaced by other alternatives for its insufficient activity or potential side-effects on the ecosystem due to the over-release of Ag ions (Ag). Herein, a facile and general strategy is developed to on-substrate fabricate silver coordination polymer nanowire arrays (Ag CPN) by simply immersing Ag-containing substrates into cationic surfactant solution at room temperature. Such a Ag CPN not only provides high-surface-area nano-biointerfaces for destroying microorganisms via physicomechanical interactions but also acts as a safe Ag reservoir, steadily releasing Ag at a relatively high but safe level (∼40 ppb, but lower than the safe level of 100 ppb).

View Article and Find Full Text PDF

Hydrophobic modification of cellulose nanofibers/bionic flower-like ZnO synergistically stabilized Pickering emulsion to enhance pesticide deposition.

Int J Biol Macromol

December 2024

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Environmental issues arising from the low pesticide utilization rate make the development of environmentally friendly and low-cost pesticide carrier systems an urgent problem to be solved. Pickering emulsion systems have shown broad application prospects in pesticide delivery. In this study, dodecenyl succinic anhydride (DDSA) was used to hydrophobically modify cellulose nanofiber (D-CNF), and biomimetic flower-like zinc oxide (ZnO) particles were prepared by precipitation method at room temperature.

View Article and Find Full Text PDF

Low Demineralized Caseins to Replace Sodium Caseinate for Application in Whipped Creams.

Foods

December 2024

University of Artois, University of Lille, University of Littoral Côte d'Opale, University of Picardie Jules Verne, University of Liège, INRAE, JUNIA, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.

Caseinate is commonly used in the dairy industry for its stabilizing properties. Its functionalities are largely due to its manufacturing process involving a high level of demineralization that induces casein precipitation. To address this, the researchers are looking for alternatives to respond to consumer demands for high-quality ingredients and increase efficiency.

View Article and Find Full Text PDF

After many years of mining in the Fang2 block of the Songfangtun oilfield, the conventional water drive development method can no longer meet the requirement of greatly improving the recovery rate, and ternary composite drive (TCD) technology is adopted for this purpose. TCD is one of the most important methods to further improve crude oil recovery, and it has entered the industrialization and promotion stage, but there are still problems of fouling in the injection and extraction system and high production and maintenance costs. In order to reduce formation damage and improve recovery in the Songfangtun oilfield, an alkali-free microemulsion system was developed by replacing the weak base sodium carbonate with sodium chloride, but its emulsification capacity was weak and the recovery enhancement value was lower than that of the weak base TCD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!